可用于人脸识别的反馈型二元神经网络
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.69805002(国家自然科学基金);the Natural Science Foundation of Zhejiang Province of China(浙江省自然科学基金);and the Education Grant for Excellent Youth ofMinistry of China(教育部)


A Novel Recurrent Neural Network for Face Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出和分析了一种新型的反馈型随机神经网络,并将其用于解决复杂的人脸识别问题.该模型采用随机型加权联接,神经元为简单的非线性处理单元.理论分析揭示该网络模型存在唯一的收敛平稳概率分布,当网络中神经元个数较多时,平稳概率分布逼近于Boltzmann-Gibbs分布,网络模型与马尔可夫随机场之间存在密切关系.在设计了一种新型模拟退火和渐进式Boltzmann学习算法后,系统被成功地应用于难度较大的静态和动态人像识别,实验结果证实了系统的可行性和高效率.

    Abstract:

    A novel stochastic neural network is proposed in this paper. Unlike the traditional Boltzmann machine, the new model uses stochastic connections rather than stochastic activation functions. Each neuron has very simple functionality but all of its synapses are stochastic. It is shown that the stationary distribution of the network uniquely exists and it is approximately a Boltzmann Gibbs distribution. It is also revealed there exists a strong relationship between the model and the Markov random field. New efficient techniques are developed to implement simulated annealing and Boltzmann lerning.The model has been successfully applied to large-scale face recognition task in which face images are dynamically captured from a video source.Learing and recoginiz-ing processes are carried out in real time.The experimental results show the new model is not only feasible but also efficient.

    参考文献
    相似文献
    引证文献
引用本文

赵杰煜.可用于人脸识别的反馈型二元神经网络.软件学报,2001,12(8):1128-1139

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号