三维欧氏距离变换的一种新方法
作者:
基金项目:

国家自然科学基金资助项目(69843001);国家863高科技发展计划资助项目(863-306-ZD04-06-4)


A New Method of Three-Dimensional Euclidean Distance Transform
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [6]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    常见的三维距离变换算法大都是对城市街区、棋盘等二维近似欧氏距离变换算法的三维扩展,得到的依然是近似欧氏距离.提出一种新的三维欧氏距离变换算法,可以得到完全欧氏距离,时间复杂度为O(n3logn).将该算法应用于三维医学CT图像内部软组织的显示,取得了较好的效果.

    Abstract:

    Most existing algorithms of three-dimensional distance transform are extensions of two-dimensional approximate Euclidean distance transform algorithms such as the city block/chessboard. Such algorithms can only get the approximate Euclidean distance. A new method of three-dimensional true Euclidean distance transform is presented in this paper. The proposed method can get the true Euclidean distance with time complexity O(n3*log n). Moreover, this method is used to render the soft tissue in three-dimensional medical CT images, and good result has been obtained.

    参考文献
    [1] Rosenfield, A., Pfaltz, J. Sequential operations in digital picture processing. Journal of Association for Computing Machinery, 1996,13(4):471~494.
    [2] Chen, Ling. Optimal algorithm of true Euclidean distance transform. Chinese Journal of Computers, 1995,8(18):611~616 (in Chinese).陈山 菱.完全欧几里德距离变换的最优算法.计算机学报,1995,8(18):611~616.
    [3] Okabe, N., Toriwaki, J., Fukumura, T. Paths and distance functions on three-dimensional digitized pictures. Pattern Recognition Letter, 1983,1:205~212.
    [4] Borgefors, G. On digital distance transforms in three dimensions. Computer Vision and Image Understanding, 1996,64(3):368~376.
    [5] Ragnemalm, I. The Euclidean distance transform in arbitrary dimensions. Pattern Recognition Letter, 1993,14:883~888.
    [6] Udupa, J.K., Odhner, D. Shell rendering. IEEE Computer Graphics & Application, 1993,13(6):58~67.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

诸葛婴,田捷,王蔚洪.三维欧氏距离变换的一种新方法.软件学报,2001,12(3):383-389

复制
分享
文章指标
  • 点击次数:4364
  • 下载次数: 5143
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:1999-05-04
  • 最后修改日期:1999-12-27
文章二维码
您是第19795269位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号