一种基于统计的神经网络规则抽取方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(69875006);江苏省自然科学基金资助项目(BK99036)


A Statistics-Based Approach for Rule Extraction from Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从功能性观点出发,提出了一种基于统计的神经网络规则抽取方法.该方法利用统计技术对抽取出的规则进行评价,使其可以较好地覆盖示例空间.采用独特的连续属性处理方式,降低了离散化处理的主观性和复杂度.采用优先级规则形式,不仅使得规则表示简洁、紧凑,而且还免除了规则应用时所需要的一致性处理.该方法不依赖于具体的网络结构和训练算法,可以方便地应用于各种分类器型神经网络.实验表明,利用该方法可以抽取出可理解性好,简洁、紧凑,保真度高的符号规则.

    Abstract:

    In this paper, from the functional point of view, a statistics-based approach for rule extraction from trained neural networks is proposed. This approach introduces statistical technique to evaluate extracted rules so that the rule set could well cover the instance space. It deals with continuous attributes in a unique way so that the subjectivity and complexity of discretization are lowered. It adopts ordered rule representation so that not only the rules have concise appearance but also the consistency process could be released when the rules are used. Moreover, this approach is independent of the architecture and training algorithm so that it could be easily applied to diversified neural classifiers. Experimental results show that the symbolic rules extracted via this approach are comprehensible, compact, and with high fidelity.

    参考文献
    相似文献
    引证文献
引用本文

周志华,何佳洲,尹旭日,陈兆乾.一种基于统计的神经网络规则抽取方法.软件学报,2001,12(2):263-269

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1999-06-25
  • 最后修改日期:1999-12-03
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号