KDD中规则提取的收敛网络方法及其应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(69835001)


Convergent Network Approach for Rule Extraction in KDD and Its Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种新的基于神经网络的规则提取方法.提出的网络由一个主网络及其映射网络组成,具有二次收敛过程.通过主网络的学习(第1次收敛)完成知识学习和网络构造,在此基础上构造了其网络映射,通过该映射网络的收敛过程实现规则的提取.该方法在规则提取时无须遍历解空间,从而很好地提高了搜索效率,降低了计算复杂度.同时,还提出估计规则数下限的信度差方法.模拟实验和应用实验也验证了所提出方法的有效性和正确性.

    Abstract:

    A novel neural network based rule extraction method is proposed in this paper. This method consists of a primary network and its corresponding mapping network, which includes twice convergent processes. The knowledge acquisition and network construction of the method are fulfilled by the first convergence of the primary network. Here by a mapping network corresponding to the converged primary network is created whose convergence is capable of realizing the rule extraction. Since there is no need of enumerating the overall space of solutions for this method to extract rules, therefore the searching efficiency is greatly increased and the computation complexity is dramatically reduced. Meanwhile, a stop criterion of rule extraction in terms of difference of belief degree is also proposed in this paper. A lot of simulation experiments and practical applications illustrate and verify the validity and correctness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

熊范纶,邓超. KDD中规则提取的收敛网络方法及其应用.软件学报,2000,11(12):1635-1641

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1999-05-18
  • 最后修改日期:1999-09-15
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号