带端点插值条件的Bézier曲线降多阶逼近
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

本文研究得到国家自然科学基金(No.69973041)、浙江省自然科学基金(No.698025)和国家973高科技项目基金(No.G1998030600)资助.


Multidegree Reduction of Bézier Curves with Conditions of Endpoint Interpolations
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究了两端点具有任意阶插值条件的Bézier曲线降多阶逼近的问题.对于给定的首末端点的各阶插值条件,给出了一种新的一次降多阶逼近算法,应用Chebyshev多项式逼近理论达到了满足端点插值条件下的近似最佳一致逼近.此算法易于实现,误差计算简单,且所得降阶曲线具有很好的逼近效果,结合分割算法,可获得相当高的误差收敛速度.

    Abstract:

    In this paper, the authors study the multidegree reduction of Bézier curves with arbitrary degree interpolation conditions of two endpoint. For the given endpoint interpolation conditions, a new approximation method of multidegree reduction is presented. Using Chebyshev polynomial approximation theory, the nearly best uniform approximation under the interpolation conditions of endpoints can be obtained. This algorithm is easy to implement and simple for error estimation. The approximation effects of the degree reduction curves are very good. Combined with subdivision algorithm, it can reach a higher rate of error convergence.

    参考文献
    相似文献
    引证文献
引用本文

陈国栋,王国瑾.带端点插值条件的Bézier曲线降多阶逼近.软件学报,2000,11(9):1202-1206

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2000-02-28
  • 最后修改日期:2000-04-13
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号