多值指数式多向联想记忆模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

本文研究得到国家自然科学基金资助.


Multivalued Exponential Multidirectional Associative Memory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多向联想记忆MDAM(multidirectional associative memory)模型是Kosko双向联想记忆模型BAM(bidirectional associative memory)的一个直接推广,它可应用于数据融合及维数分裂,使模型能处理大维数输入问题.目前所提出的若干种多向模型均局限于二值输入/输出模式对,但如在图象处理等的实际应用中,所处理的模式均是多值的.本文的目的就是提出一个多值指数式多向联想记忆模型MVeMDAM(multivalued exponential multidi

    Abstract:

    MDAM (multidirectional associative memory) is a direct extension of Kosko BAM (bidirectional associative memory). It can be applied in data fusion and splitting larger dimensional input patterns to ease some problems to be solved. At present, the existing multidirectional models only dealt with binary input-output patterns or data. However, some patterns in such applications as image processing and pattern recognition are represented in a multivalued mode. Therefore, the above models have some processing difficulties. The purpose of this paper is to present a MVeMDAM (multi-valued exponential associative memory) to partially solve the difficulties. In this paper, the stability of the MVeMDAM is proven in synchronous and asynchronous update modes for neuron states, which enables the MVeMDAM to ensure all the training pattern sets to become the stable states of the system. Finally, the computer simulation results confirm feasibility of the proposed model.

    参考文献
    相似文献
    引证文献
引用本文

陈松灿,高 航.多值指数式多向联想记忆模型.软件学报,1998,9(5):397-400

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1997-03-19
  • 最后修改日期:1997-05-26
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号