统计遗传算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

本文研究得到国家自然科学基金,国家863高科技项目基金资助.


THE STATISTICAL GENETIC ALGORITHMS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文讨论了遗传算法中框架定理的不足之处,并对之进行了改进,然后分析了遗传算法与A算法的相似性,以及遗传算法的概率性质.由此联想到它与SA算法的相似性,在此基础上,作者将原先发展的一套SA算法的理论移植到遗传算法中来,建立一个新的算法,称之为统计遗传算法(简记为SGA算法).为适合于优化计算,作者引入最大值统计量及其对应的SA算法(简称为SMA算法),并将SMA算法与GA算法相结合(记为SGA(MAX)算法).新的算法不仅提高了算法的精度和降低了计算的复杂性,而且能克服GA算法中出现“早熟”的现象以及提供进行并行计算的可能性.更主要的是新的方法为GA算法的精度、可信度和计算复杂性的定量分析提供了理论和方法上的有力工具.

    Abstract:

    The deficiency of the schema theory in GA(genetic algorithms)and its improvement are discussed in this paper.The similarity between GA and heuristic search algorithm(a algorithm)and the probabilistic properties of GA are analyzed as well.Form the discussion.the similarity between GA and SA(statistical heuristic search)proposed by the authors iS discovered.Therefore,when transferring the theory and results of SA to GA,a new statistical genetic algorithm can be established.In order to adapt to optimiza-tion computation.the maximal statistic and its corresponding SA called SMA are intro-duced.By combining the SMA and GA,a new algorithm SMA(MAX)is obtained.Using the new algorithm,the prematurity in general GAs can be overcome.The new algorithm also provides the possibility for parallel computing and a powerful tool for quantitative analysis of accuracy,confidence and computational complexity of GA.

    参考文献
    相似文献
    引证文献
引用本文

张铃,张钹.统计遗传算法.软件学报,1997,8(5):335-344

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:1996-05-08
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号