对话意图及语音识别错误对交互体验的影响
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2016YFB1001404);国家高技术研究发展计划(863)(2015AA016305);国家自然科学基金(61425017,61403386,61305003,61332017,61375027,61273288,61233009,61203258);中国科学院战略性先导科技专项(XDB02080006);广西云计算与大数据协同创新中心、广西高校云计算与复杂系统重点实验室资助项目(YD16E11);广西可信软件重点实验室研究课题(kx201601)


Error Analysis of Intention Classification and Speech Recognition in Human-Computer Dialog
Author:
Affiliation:

Fund Project:

National Key Research & Development Plan of China (2016YFB1001404); National High-Tech R&D Program of China (863) (2015AA016305); National Natural Science Foundation of China (61425017, 61403386, 61305003, 61332017, 61375027, 61273288, 61233009, 61203258); Strategic Priority Research Program of the Chinese Academy of Sciences (XDB02080006); Program of Guangxi Cooperative Innovation Center of cloud computing and Big Data, Guangxi Colleges and Universities Key Laboratory of cloud computing and complex systems (YD16E11); Program of Guangxi Key Laboratory of Trusted Software (kx201601)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在自然人机对话中,由于环境噪声、方言口音等因素带来的语音识别错误以及语义分析的不充分等原因,计算机在理解用户交互意图时出现偏差,使得计算机对要反馈的话题出现错误,造成人机对话进程的断裂.以面向咖啡为主题的漫谈式人机对话为例,将对话中断分为3种情况:话题反馈不当引起中断、话题正确情况下的模糊反馈不当和精确反馈不当引起中断.根据用户与计算机对话的记录分析比较上述3种情况下人机对话进程断裂情况.统计数据结果表明,话题反馈不当带来的对话中断最为明显,在对话进程断裂情况中达到了60.1%的比例;在话题反馈正确情况下,模糊回答不当和精确回答不当带来的话题中断比例分别为22.2%和21.6%;在语音识别错误情况下,语义分析会带来数量更大的反馈错误.实验数据分析结果表明,在语音识别错误情况下,根据上下文信息提高计算机对用户话题反馈的准确率,能够有效降低人机对话的中断,提高人机对话的自然度.该工作为自然人机对话的意图分类重要性提供了数据分析和实验论证.

    Abstract:

    In the natural human-computer dialogue system, environmental noises, accents and some other factors may cause the speech recognition errors which leads to computers' error responses to human. The dialogs are often interrupted by the system's bad responses. Three types of human computer interruptions are considered in this paper:improper feedback for topic, improper response for a vague user query, and improper feedback for an exact user query. According to the records of the user and computer dialogue analysis, the interruptions caused by three situations above are compared and used to analyze the importance of intention classification in human-computer conversation. The statistical data find that the dialogue interruption caused by the inappropriate topic feedback is the most obvious problem, amounting to 60.1%. Under the correct feedback of the topic, the interrupt ratio of the subject caused by accurate answer and fuzzy answer is 22.2% and 21.6% respectively. In the case of error speech recognition, semantic analysis can bring more feedback error to the error of speech recognition. The analysis of experimental data shows that the speech recognition errors, can effectively reduce the man-machine conversation interrupt and improve the naturalness of human-computer dialogue system according to the context information to improve the accuracy of the computer on the topic of user feedback,. This paper provides the importance of intention classification in human machine dialogue, which helps to improve the performance of human-computer dialogue system.

    参考文献
    相似文献
    引证文献
引用本文

杨明浩,高廷丽,陶建华,张大伟,孙梦伊,李昊,巢林林.对话意图及语音识别错误对交互体验的影响.软件学报,2016,27(S2):69-75

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-06-01
  • 最后修改日期:2016-01-05
  • 录用日期:
  • 在线发布日期: 2017-01-10
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号