基于云模型的无线传感器网络链路质量的预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61363015,61501217);江西省高等学校科技落地计划(KJLD14054)


Cloud Model-Based Link Quality Prediction Model for Wireless Sensor Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无线传感器网络中,节点通过单跳或多跳传递信息.如能提前获知链路质量信息,为上层路由选择链路提供参考,是感知信息实时、准确地送达监控中心的基础.在分析现有基于智能学习链路质量预测方法的基础上,提出一种基于云模型的链路质量预测机制.通过收集不同场景下的链路质量样本,采用自适应高斯云变换对训练样本中的 RSSI(received signal strength indication),LQI(link quality indicator),SNR(received signal strength indication)及PRR(packet reception rate)进行链路划分;考虑到传感器节点的资源受限问题,采用 Apriori 算法对划分后的链路质量参数 RSSI,LQI,SNR 及 PRR 进行关联规则挖掘;在此基础上,基于三维云正向发生器预测链路质量.仿真结果表明,与基于 BP 神经网络的预测方法相比,提出的链路质量预测机制具有较高的预测精度.

    Abstract:

    Message is delivered between nodes through single hop or multiple hops in wireless sensor networks(WSNs). Obtaining link quality information in advance which provides reference for the upper routing protocol to select link is the basis of delivering to the monitoring center accurately and in time. In this paper, a concrete analysis about the related works on WSNs link prediction based on intelligent learning is presented. A novel model, Cloud Model, is proposed to predict link quality. The large amounts of link quality samples are collected from different scenarios, and then adaptive gauss cloud transformation is applied to clustering training samples, such as RSSI, LQI, SNR and PRR. Taking the limit of node's resources into consideration, an Apriori algorithm is applied to mining the association rules from the RSSI, LQI, SNR and PRR which had been clustered. At last, three dimensional cloud model is employed in WSNs link prediction. Comparing with BP neural network prediction method, the proposed prediction model achieves higher accuracy as simulation experiment results show.

    参考文献
    相似文献
    引证文献
引用本文

刘琳岚,谷小乐,刘松,舒坚.基于云模型的无线传感器网络链路质量的预测.软件学报,2015,26(S1):70-77

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-04-15
  • 最后修改日期:2015-07-20
  • 录用日期:
  • 在线发布日期: 2015-11-14
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号