摘要:目标跟踪是无线传感器网络的重要应用之一.研究目标运动轨迹满足一个二次等式约束(quadraticequality constraint)的目标跟踪问题.在实际应用中,当飞行器进行盘旋或者车辆沿弯道行使时,其轨迹均近似满足一个二次等式约束.考虑在卡尔曼滤波(Kalman filtering,简称KF)算法中引入二次等式约束以提高目标跟踪精度.所提出的算法在每个采样时刻首先利用新获取的观测量和无约束卡尔曼滤波算法更新目标运动状态估计,然后利用带二次等式约束的极大似然估计(maximum likelihood estimator,简称MLE)修正目标运动状态估计.在求解约束极大似然问题时,将其看作一类广义信赖域子问题(generalized trust region sub-problem,简称GTRS),以获得全局最优解.仿真结果表明,该算法与现有带二次等式约束的卡尔曼滤波算法相比具有更高的跟踪精度.