基于时间访问轨迹的文件的智能推荐
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.U0735004 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2007AA01Z159 (国家高技术研究发展计划(863))


Intelligent File Recommendation Based on Time Access Tracking
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着计算机用户个人信息量的日益扩大,如何帮助用户在系统中快速找到所需资源已成为当前智能交互行为模型的重要课题.过往的研究大多集中于个人信息管理,力求以更加便于用户理解的个性化方式重新组织计算机资源结构.然而,由于上述系统往往需要用户大量的额外操作,并且重构用户的知识系统需要较为漫长的时间而不被用户采用.考虑到用户访问文件的主题性和目的性(用户往往会出于同一目的在同一时间段内同时访问多个同主题相关的文件),提出基于用户时间访问轨迹的智能文件推荐,并设计实现基于时间访问轨迹的智能文件推荐桌面工具(intelligent file recommendation desktop toolkit,简称IFRDT),将根据用户访问文件的轨迹,针对用户当前正在访问的文件向用户推荐最有可能被访问到的同主题的其他文件,以减少用户查找所需资源花费的时间开销.实验结果表明,使用IFRDT向用户推荐文件比仅仅向用户呈现访问历史更能为用户节省查找文件的时间;被试用户可以在IFRDT中找到一半以上的所需文件,这就是为用户节约了一半以上的查找开销.

    Abstract:

    Since the amount of information on today’s computers grows, helping computer users to locate the required files in file systems has become an important topic in today’s intelligent interaction model research. Past research has mostly concentrated in PIM (personal information management), to re-organize file hierarchies in a more understandable way for individual users. However, due to the numerous extra operations and the long period that needed for the re-organizing of users’ knowledge systems, the preceding applications can hardly be adopted by users. Considering that there would be a certain topic or purpose when user accessing files (a user may always view several files that related to the same topic during the same time), this paper proposes file recommendation based on tracking user’s file operations. An intelligent file recommendation desktop toolkit (IFRDT) is implemented, which will track user’s file access history, recommend the most related files according to the currently being accessed file, to reduce time cost for finding desired information. Experimental results show that IFRDT can save more energy of searching files than history, and users can find over 50% of desired files in IFRDT and directly open them without searching in directories.

    参考文献
    相似文献
    引证文献
引用本文

韩 爽,王 衡.基于时间访问轨迹的文件的智能推荐.软件学报,2009,20(zk):59-65

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-09-20
  • 最后修改日期:2009-04-09
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号