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Abstract: Graph grammars have been developed as an extension of the formal grammars on strings to grammars 
on graphs, and provide a mechanism in which transformations on graphs can be modeled in a mathematically 
precise way. In this paper, based on confluent graph grammars, the authors present a novel representation for 
data-flow graphs, control-flow graphs, combined control-data-graphs, bipartite graphs and hyperedge graphs. How 
to extract parallelism is specified automatically at different levels by graph rewriting, thus facilitating the design 
and implementation of parallel compilers and parallel languages. 
Key words: graph grammar; graph rewriting; dependency graph; hypergraph; compiling 

摘  要: 图语法将字符串上的形式文法扩充为图上的形式文法,提供一种能够使用精确的数学方法来模拟图

变换的机制.提出了几种新的基于一致图语法的方法来表示控制流图、数据流图、控制数据流图、二分图和超

图,并说明如何通过图重写来自动生成依赖图并挖掘并行性,从而协助并行编译器和并行语言的设计和实现. 
关键词: 框架图语法;图重写;依赖图;超图;编译 
中图法分类号: TP301  文献标识码: A  

1   Introduction 

Parallel computing has become a natural medium for solving a wide variety of computationally intensive 
problems in a very fast and efficient manner. Currently, more and more distributed software systems base their 
platforms on heterogeneous connected workstation clusters. However, the inherent complexity of many parallel 
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computing applications makes the development using existing parallel programming paradigms both 
time-consuming and error-prone. 

In parallel computing, dependency graphs are widely used to represent data and control dependencies among 
the computations. Two kinds of graphs are generally used: DAGs (directed acyclic graphs) and TIGs (task 
interaction graphs). Traditionally, the data and control dependencies among components in a program executing in 
parallel are described as DAGs, whose vertices and edges represent computations and communications/ 
dependencies respectively. TIGs are used to describe the computation and communication structures of another 
category of applications.  

For DAGs, we generally use specific clustering algorithms and greedy algorithms to map and schedule tasks 
on multiprocessors; for TIGs, we often use clustering and partitioning approaches in the parallelization of 
calculations. The objective is to minimize the finish time of the last component, minimize overall communication 
costs, or maximize task throughput. Recently, researchers argue that standard graph model has significant 
shortcomings, and propose some new graph diagrams as an improvement. A bipartite graph model and a hypergraph 
model were proposed in Ref.[1]; two computational hypergraph models were proposed in Ref.[2]. For example, for 
parallelizating the computations through rowwise or columnwise decomposition of an m*m square matrix A with 
the same sparsity structure as the coefficient matrix[2], traditional graph model is suitable for the partitioning of 
nonsymmetric matrices. We need more powerful graph models to represent the dependency relations emerging in 
this problem, and also need a systematic and formal method to derive the significant characteristics of the graphs. 

We need a general method being capable of expressing all these graphs in an efficient way. Traditionally, 
dependency graphs are represented by usual graphs that consist of the node set and edge set. The whole structures of 
these graphs must be maintained during the whole process they are involved. Because dependency graphs are used 
to express the intricate dependency constraints among up to thousands of nodes, some crucial properties should be 
deducted out by analyzing the structures of these graphs. However, since the traditional graphs only capture the 
connection relations between nodes and edges, it is extremely hard to get structural information concerning with 
different components in the graphs, not to mention to find the intrinsic properties which are not evident without 
applying some systematic methods. Moreover, parallel programming requires the development of visual 
environments and visual tools to facilitate the analysis and processing of these dependency graphs[3]. If we can 
figure out the semantic characteristics of dependency graphs and deduct some other properties by applying a formal 
deduction method, we will obtain much more useful information than what we can obtain by just analyzing the 
traditional node and edge connecting graphs. This is the motivation of our paper. 

Graph grammars are motivated by considerations about pattern recognition, compiler construction, and data 
type specification, and then applied to the modeling of concurrent systems, massively parallel computer 
architectures, visual languages and many others[4]. They provide a mechanism in which local transformation on 
graphs can be modeled in a mathematically precise way.  

Recall the formal language theory based on strings, which is a natural way for describing the complex 
situations at an intuitive level. For example, the following production rules are a compact recursive notation for 
specifying how to derive legal syntactic constructs of fraction. The numeral string 789 can be derived by a recursive 
application of the production rules.  

〈fraction〉::= 〈digit 〉 | 〈digit〉〈fraction〉 
Similarly, they are a natural generalization of the formal language theory based on strings and the theory of 

term rewriting based on graphs to facilitate the description and analysis of the dependency graphs that are crucial in 
compiler construction and parallel computing. 

In this paper we present some graph-grammar-based representation for data-flow graphs, control-flow graphs, 
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control-/data-flow graphs, bipartite graphs and hypergraphs to facilitate the design of parallel compilers. The 
structure of this paper is as follows. In Section 2 we introduce some basic concepts and properties of the Node 
Replacement Graph Grammars and Hyperedge Replacement Graph Grammars. In section 3 we present our graph 
grammars for a variety of graphs. In sections 4 and 5 we give the discussion and the conclusion respectively. 

2   Confluent Graph Grammars 

In this section, we introduce the concepts and definitions of node replacement graph grammars and hyperedge 
replacement graph grammars given by other researchers[5~7].  

A graph grammar consists of a finite set of productions. A production is a triple (M, D, E) where M and D are 
graphs and E is some embedding mechanism. When it is applied to a graph H, the occurrence of M is removed from 
H and replaced by an isomorphic copy of D, then the embedding mechanism E is used to attach D to the remainder 
H- of H. Node replacement where a node is replaced by a new subgraph which is connected to the remainder of the 
graph and edge/hyperedge replacement where a hyperedge is replaced by a new subhypergraph which is glued to the 
remainder of the hypergraph, are the two basic choices for rewriting a graph. 

2.1   Node replacement graph grammars 
When the mother graph consists of only one node, the node replacement is called NLC (node label controlled) 

mechanism. Formally, an NLC graph grammar is a system G=(∑, ∆, P, C, S) where ∑-∆ and ∆ are the alphabets of 
nonterminal and terminal node labels respectively; P is a finite set of NLC productions, C is a connection relation, 
and S is the initial graph. The graph language generated by G is L(G) = {H ∈ GR∆ | S =>* H} where GR∆ is the set 
of the undirected graphs with node labels in ∆, => represents one rewriting step, and =>* represents a derivation, i.e. 
a sequence of rewriting steps. An extension of NLC called NCE (neighbored controlled embedding) is much more 
powerful, where each production in P is of the form X -> (D, C) such that X -> D is an NLC production and C is a 
connection relation “for D”, i.e. C ⊆ ∑ × VD (where VD is the set of nodes of D). We can further extend the NCE 
approach to the directed node-labeled graphs in which C consists of triples (µ, δ, d), where d ∈ {in, out}. (µ, δ, in) 
means that the embedding process should establish an edge to each node labeled δ in D from each node labeled µ 
that is an “in-neighbour” of the mother node m. Similarly, (µ, δ, out) means that the embedding process should 
establish an edge from each node labeled δ in D to each node labeled µ that is an “out-neighbour” of the mother 
node m. NLC-like graph grammars with directed edge together with edge labels are called edNLC grammars G = (∑, 
∆, Γ, P, C, S) where Γ is the set of edge labels[6]. 

Formally, let Σ and Γ be an alphabet of node labels and edge labels respectively. A graph over Σ and Γ is a 
tuple H = (V, E, λ), where V is the finite set of nodes, E ⊆ {(v, γ, w) | v, w ∈ V, v ≠ w, γ ∈ Γ} is the set of edges, and 
λ : V -> Σ is the node labeling function. For graph H, these components are denoted as VH, EH, and λH, respectively. 
For unlabeled nodes and/or edges, Σ = {#} and/or Γ = {*}. GRΣ,Γ denote the set of all graphs over Σ and Γ, and a 
subset of GRΣ,Γ is called a graph language. A production of an edNCE grammar has the form X -> (D, C) where X is 
a nonterminal node label, D is a graph, and C is a set of connection instructions. A graph with embedding over Σ 
and Γ is a pair (H, C) with H ∈ GRΣ,Γ and C ⊆ Σ × Γ × Γ × VH × {in, out}. A connection instruction (α, β, γ, x, d) 
can be written as (α, β/γ, x, d), when d = out it means that if there is a β-labeled edge from the mother node v for 
which (D, C) is substituted to a node w, then the embedding process will establish a γ-labeled edge from x to w. 
Similarly for ‘in’ instead of ‘out’.  

An edNCE grammar is confluent if the result of derivation does not depend on the order in which the 
productions are applied. That is, an edNCE grammar G is confluent, or a C-edNCE grammar, if for all productions 
X1 -> (D1, C1) and X2 -> (D2, C2) in P, all nodes x1∈VD1 and x2∈VD2, and all edge labels α, β ∈ Γ, the following 
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equivalences hold: ∃β ∈ Γ : (X2,α/β,x1,out)∈C1 and (λD1(x1),β/δ,x2,in)∈C2Ù∃γ∈Γ(X1,α/γ, x2, in)∈C2 and (λD2(x1), 
γ/δ,x1,out)∈C1.  

2.2   Hyperedge replacement graph grammars 

In hyperedge replacement, after the hyperedge in structure D is removed, the replacing structure is glued into 
the original structure M by fusing each external node in D with the corresponding attachment node in M. Formally, a 
multi-pointed hypergraph over Σ is a tuple G = (V, E, s, t, l, begin, end), where V is the finite set of nodes, E is the 
finite set of hyperedges, s : E -> V* is the source function, t : E -> V* is the target function, l : E -> Σ is the labeling 
function such that type(l(e)) = (|s(e)|, |t(e)|) for every e ∈ E, where |s(e)| and |t(e)| are the length of string s(e) and t(e) 
respectively, begin ∈ V* is the sequence of begin nodes, and end ∈ V* is the sequence of end nodes[7]. The 
components of G will also be denoted by VG, EG, SG, TG, LG, begin(G), and end(G). G is said to be of type(m, n), i.e. 
type(g) = (m, n), if |begin(G)| = m and |end(G)| = n. Similarly we will write type(e) to denote type(l(e)). The set of 
hypergraphs over Σ will be denoted GRΣ, and GR denotes the union of all GRΣ. A (typed) graph language is a subset 
L of GRΣ for some Σ such that all graphs in L have the same type(m, n), and the type of L is denoted by type(L) = (m, 
n). 

A basic operation on hypergraphs is the substitution of a hypergraph for an edge. Let e be an edge of 
hypergraph G and H be a graph satisfying type(H) = type(e) = (m, n). By removing e and adding H we get the 
hypergraph G′, G′ = (VG ∪ VH, (EG – {e}) ∪ EH, s, t, l, begin(G), end(G)), where s(e) = sG(e) for e EG – {e} and s(e) 
= sH(e) for e EH, and similarly for t and l. The substitution of h for e in G, denoted by G[e/H], is the hypergraph 
G′/R where R = {SG(e)(i), begin(H)(i) | 1 ≤ i ≤ m} ∪ {tG(e)(i), end(H)(i) | 1 ≤ i ≤ n}. Furthermore, a replacement is a 
mapping Σ -> GR such that type(∅(σ)) = type(σ) for every σ; it is extended to a mapping from GRΣ to GR by 
defining, for G ∈ GR, ∅(G)=G[e1/∅(l(e1))]…[ek/∅(l(ek))] where EG={e1,…,ek}. It is well known that this definition 
does not depend on the order e1, …, ek in which the edges are replaced. 

Hyperedge replacement grammars (or HR grammars) are context-free graph grammars that substitute graphs 
for edges. A HR grammar is a tuple G = (N, T, P, S) where N is a typed alphabet of nonterminals, T is a typed 
alphabet of terminals (disjoint with N), P is a finite set of productions, and S ∈ N is the initial nonterminal. Every 
production in P is the form X -> H which X ∈ N, H ∈ GRN∪T, and type(X) = type(H). Application of production p = 
X -> H to a graph yields graph g[e/H], i.e. G =>p G′. A sequence of the direct derivations H0 => … =>Hk is called a 
derivation of length k from H0 to Hk and is denoted by H =>* Hk or H =>*P H′ or H0 =>k Hk. 

HR perseveres the confluence property. Let H be a hypergraph with distinct e1, e2 ∈ EH and let Hi be a 
hypergraph with type(Hi) = typeH(ei) for i ∈ {1, 2}, then H[e1/H1][e2/H2] = H[e2/H2][e1/H1]. The concepts of 
derivation trees as a convenient representation of derivations are similar to those of node replacement grammar. 

3   Dependency Graphs 

3.1   Related work 

Over the past several decades, there has been growing interest in simultaneous exploitation of parallelism in 
sequential applications. For instance, because the HPF standard does not provide directives for expressing task 
parallelism at this time, researchers have independently proposed directives for expressing task parallelism in HPF 
programs. 
� Fortran-M[8] is initially conceived as an extension to Fortran for expressing task parallelism. Recently, it has 

been integrated with HPF[9] in order to enable the simultaneous exploitation of task and data parallelism.  
� The Parafrase compiler project[10] parallelizes Fortran applications for shared memory machines. It analyzes 

an input Fortran program and constructs a HTG (hierarchical task graph) representation for the program. 
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The HTG representation aims to capture parallelism information at all levels of granularity.  
� Dhagat, et al.[11] have proposed a language, UC, that allows for the expression of task and data parallelism. 

The UC compiler generates code that executes the program in a task and data parallel manner. 
� Shankar, et al.[12] have proposed the hierarchical MDG (macro dataflow graph) representation which is used 

for programs and is very similar to the HTG (hierarchical task graph). It abstracts much of the information 
of granularity for Fortran programs and is well-suited for our allocation and scheduling algorithms.  

All these works use traditional graphs to represent the dependency graphs, and develop corresponding tools to 
facilitate the construction and modification of these graphs. Some visual tools have been also developed too. 
However, they suffer from the weaknesses in expressive capacity and automatic deduction which are inherent to the 
traditional graph method. In this paper, we present a new scheme of detecting and representing parallelism using 
graph grammar techniques. Our representation is very powerful and is able to capture dependency information at all 
levels of granularity in a variety of programs. 

3.2   Control-Flow graphs 

Task graphs have been used as a convenient abstraction of parallel computations and programs in virtually all 
areas of parallel processing and exploiting parallelism requires synchronization between control- and 
data-dependent tasks. CFGs (control-flow graphs) of structured programs (which only contain three kinds of control 
structure: sequence, condition and loop) are useful for data flow analysis. These control-flow graphs can be 
generated by the edNCE grammar Gc1 = ({S, X, i, d, #}, {i, d, #}, {*}, P, C), where P contains the productions given 
in Fig.1. Note that the unlabeled nodes/edges in the Figure have labels # and *, respectively.  
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Fig.1  Productions of structured control flow graphs Gc1 

A derivation example of L(Gc1) is shown in Fig.2, where the productions p1, p2, p7, p4, p6 and p7 are applied in 
sequence. 

X 

=> X =>
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X

X
=> =>

X
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i

i i

d d

 

 

 
Fig.2  A derivation of graph grammar Gc1 

It is easy to check that edNCE Gc1 is confluent, thus the result of derivation does not depend on the order in 
which the productions are applied. 

Similarly, the control-flow graphs can be generated by the HR grammar Gc2 = ({C, D}, {c, d}, P, C), where P 
contains the productions given in Fig.3. A derivation example of L(Gc2) is given in Fig.4. 

  



 李国东 等:嵌入一致图语法的依赖图 961 

As we have mentioned, HR grammars (including Gc2) are context-free graph grammars, and have the 
properties such as sequentialization and parallelization, associativity and confluence, so we can use the concepts of 
derivation trees and apply Leftmost Derivation to obtain the target graph language. 
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Fig.3  Productions of HR grammar Gc2 for control-flow graphs 

3.3   Data-Flow graphs 

In this section we present a graph-grammar-based representation for DFG (data-flow graphs) to capture the 
data parallelism not described by control-flow graphs. A node y conflicts with node x if either x or y shares access to 
a common memory location and at least one of which is a “write” operation[13]. y is said to be data dependent on x if 
y accesses a data item modified (written) by x (denoted as x δd y). The data dependence graph DFG = (VD, ED) is 
defined as the directed graph such that VD is the set of tasks and, for x, y ∈ VD, (x,y) ∈ ED if x δd y. There are two 
distinguished nodes called START and STOP in the DFG. START precedes all other nodes and STOP succeeds all 
other nodes. Edges in the DFG correspond to the precedence constraints that exist between tasks. The IN directive 
declares input variables for a node, while the OUT directive declares output variables. Input/output directives must 
be provided for all nodes in the program. 

Given a set of n tasks (nodes) VD, a set of input items (variables) ID, and if the input/output directives are 
provided for all nodes x ∈ VD, i.e. IN(x) ∈ ID and OUT(x) ∈ ID, the DFG can be generated by an edNCE grammar 
Gc1 = ({S, X, #}, {*}, ID, P, C, S), where P contains a production called Node Production of x (NPx) for each node x 
∈ VD. The right hand side of the NPx contains a terminal node x1 labeled # and an unterminal node x2 labeled X with 
edges labeled m, m ∈ OUT(x), between them, and its connection relations include (#, m/m, x1, in) for each m ∈ IN(x) 
and (#, m/m, x2, in) for each m ∈ ID−OUT(x). In addition, P contains two productions for generating START node 
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and STOP node of the DFG. 
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Fig.4  A derivation of HR grammar Gc2 for control-flow graphs 

For example, In Fig.5(a), four nodes v1, v2, v3 and v4 with the input/output directives are provided such that 
IN(1) = {a}, OUT(1) = {a, c}, IN(2) = OUT(2) = {a, b}, IN(3) = {b, c}, OUT(3) = {c}, IN(4) = OUT(4) = {a}. Note 
that the two black nodes are the START node and STOP node. These nodes can execute in an order of 
v1->v2->v3->v4 or v2->v1->v4->v3 or v4->v3->v2->v1, resulting in the DFGs shown in Fig.5(b). There are twenty other 
feasible orders. The corresponding edNCE grammar is Gd1 = ({S, X, #}, {*}, {a, b, c}, P, C, S), where the 
productions in P are given in Fig.5(c). Note that the unlabeled nodes in the figure have label #, and ID = {a, b, c}. 
For brevity sake, edges from the same source to the same target are combined into one edge whose label set is the 
union of the label sets of the original edges.  
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Fig.5  DFGs and the corresponding edNCE 

A derivation example of L(Gd1) is shown in Fig.6 where p1, p2, p3, p4, p5 and p6, are applied in sequence, and 
the resulting CDF is exactly the one shown in Fig.5(b) with task order v1->v2->v3->v4. 

Combing partial DFGs instead of incrementally adding a node in each step will accelerate the process of 
constructing the whole DFG. Intuitively, in order to combine two partial DFGs, we consider the list of variables 
written by the first DFG and compare it against the list of variables referred to in the second DFG. If we find out 
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that a variable referred to in the second DFG is written in the first DFG, we look for the node that modifies the 
variable list in the first DFG, and connect all nodes that refer to the variable in the second DFG to that node. If a 
variable is written in the first DFG and not written in the second DFG, the last node to write to the variable is 
connected to the STOP node of the second DFG. Similarly, if a variable is referred to in the second DFG but not 
written in the first DFG, we connect all nodes that refer to the variable in the second DFG to the START node of the 
first DFG. Finally, we free the STOP node of the first DFG and the START node of the second DFG. For example, in 
Fig.7, some of the three partial DFGs, G1, G2 and G3, with IN(G1) = OUT(G1) = {a, b, c}, IN(G2) = {a}, OUT(G2) = 
{a, c}, IN(G3) = OUT(G3) = {a, b}, can be combined into a larger partial DFGs with respect to the order of G1->G2, 
G2->G3 or G1->G2->G3. 
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Fig.6  A derivation of Gd1 
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Fig.7  Data dependency graph 

If we break each DFG into multiple partitions each of which has only one node, and construct a production for 
each node by the way we have mentioned, then applying these productions will also generate the same partial DCFs. 
However, this process will be time-consuming, especially when some partial DCFs occur frequently in the target 
DCF. Thus, we can construct a production for each partial DCF in the way similar to constructing a production for a 
single node. For instance, Fig.8 shows the three productions corresponding to the four partial DCFs in Fig.7. 
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Fig.8  Productions of a partial DFG 
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3.4   CDG (control- and data-flow graphs) 

To exploit available task and data parallelism for an application, we require a program representation that 
captures information about both control-flow and data-flow parallelism. During the last several years, many 
compiling techniques have focused on loop parallelism, e.g. vectorization, loop interchange, and loop blocking. 
However, nonloop/functional parallelism is more difficult to detect, package, schedule, or even express in a 
high-level language, and it has increasingly been the target of multithreading and instruction-level parallelism[14]. 
Thus, in this section we concentrate on functional parallelism instead of loop parallelization. 

The parallelism extracted from the control flow graph can be embedded into the data dependence graph, thus 
the graph grammar for CFGs and DFGs should be combined. In Ref.[15] acyclic CFG is transformed to CDG 
(control dependence graph), which can be constructed from a postdominaotr tree, to facilitate the analysis and 
extraction of functional parallelism. We introduce the concept of CDG as follows. 

Node y postdominates node x, denoted by y ∆p x, iff every path from x to STOP (not including x) contains y. 
Node y is control dependence on node x with label x -> a ((x, a) is an arc in CFG), denoted by x δc y, iff (1) y ~∆p x 
and; (2) there exists a nonull path P=〈x,a,…,y〉 such that for any z P (excluding x and y), y ∆p z. The control 
dependence graph CDF of a CFG is defined as the directed graph with labeled arcs, CDF=(V,E) such that V is the 
same as that of CFG and (x,y)∈CE with label x->a iff x δc y with label x->a. CDG can be built form CFG using the 
postdominance tree[16]. 

An edNCE grammar Gc3 can be used to generate CDGs. Gc3=({S, X, #}, {#}, {*}, P, C, S), where productions 
in P is given in Fig.9. 

X

S  X

X

X

X  X

X

X

X

p 1 p 2 p 3 p 4 p 5  
 

Fig.9  Productions of Gc3 

A derivation example of L(Gc3) is given in Fig.10 where productions p1, p4, p4, p2, p3, {p3, p3, p3} and {p3, p3} 
are applied in sequence. 

 

S => 
X

=> => =>* =>* 

X
X

=> 

XX 

=>

XX XX
 

Fig.10  A derivation of Gc3 

We can further design an edNCE grammar for generating a kind of graphs named Functional Control/Data 
Graphs (FCDG) which are more powerful than CDGs because a FCDG is capable of combining a CFG and a DFG 
into one single graph without loss of the information about data dependency and control dependence. Let Gf1 be the 
edNCE grammar that is obtained from combining Gc3 and Gd1 above by adding most productions of the two 
grammars and making some minor modification, which is indicated in Fig.11. Productions p1, p2, p3, p4 account for 
building all ancestor-indexed trees (with edges from an ancestor to its offspring) such that there is an additional 
edge from each node to any of its ancestors, thus preserve the control-flow dependency relations. Productions p6, p7, 
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p8 and p9 correspond to four computation nodes (for instance, a procedure or a clause in the program language), 
which is used to derive the data-control dependency relations. Finally, production p5 is used to generate the STOP 
node, note that STRAT node and STOP node are represented by a block circle in the figures.   

A derivation example of L(Gf1) is given in Fig.12 where productions are p1, p4, p6, p4, p7, p2, p8, {p5, p4}, p9 
and p5 are applied in sequence. Note that the target graph may have multiple STOP nodes, whereas only one START 
node will exist in the final graph. 

Gf1, Gd1 and Gc3 are all boundary NLC (NCE) graph grammars in which no two nodes with a nonterminal label 
are connected by an edge in the right hand side of productions and in the initial graph. An important feature of these 
grammars is: in a derivation, one obtains a sentential form with nodes x and y that are not connected by an edge, 
then whenever will happen later to those nodes in the derivation, no node descending from x will ever be later 
connected to a node in the derivation, thus ensuring that the grammar is confluent. 
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Fig.11  Productions of Gc3 
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Fig.12  A derivation of Gf1 

3.5   Advanced graph representation for dependency 

For TIGs, the standard approaches using the traditional graphs have several significant shortcomings while 
partitioning the nodes into equally weighted sets[1]. In particular, they suffer from the limitations due to lack of the 
expressibility in the standard model. A bipartite graph model for describing matrix vector multiplication is proposed 
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in Ref.[1]. It is a special type of graph in which the vertices are divided into two disjoint subsets such that no edges 
connect two vertices in the same subset. It is most useful when the initial tasks are logically distinct from the final 
tasks, and has better representation capacity than the standard model does. 

We just consider the complete bipartite graph here. The productions for general bipartite graphs can be 
obtained by similar methods. Let Km,n be the undirected complete bipartie graph on m and n nodes, i.e. the graph (V, 
E, λ) such that V = {u1, …, um, v1, …, vn}, E = {(ui, *, vj), (vj, *, ui) 1 ≤ i ≤ m, 1≤ j ≤ n}, and λ(x) = # for every x ∈ V. 
The edNCE grammar GKm,n with the five productions shown in Fig.13 generates all the graph Km,n with m,n ≥ 1. 
The connection relation C1 of p1 is empty, the connection relation C2 of p2, C3 of p3 and C5 of P5 are the same, i.e. 
{(#, */*, X, in), (#, */*, X, out)}, while C4 of P4 is {(#, */*, Y, in), (#, */*, Y, out), (#, */*, #, in), (#, */*, #, out)}. 
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Fig.13  Productions of GKm,n 

A more elegant model is the hypergraph model. A hypergraph is a generalization of the graph in which edges 
(hyperedges) can have more than two vertices. It has broader applicability than the standard model since it correctly 
describes the minimal communication volume. It is more expressive than the standard model because it can encode 
problems in with unsymmetric dependencies. Figure 14 shows the two-way rowwise decomposition of a sample 
structurally nonsymmetric matrix on the left and the corresponding bipartioning of its associated graph depicted in 
Ref.[2], where the hyperedges crossing the processors represent the dependency between the nodes assigned to 
different processors. As we have discussed, hyperedge replacement graph grammars deal efficiently with 
hypergraphs, and choosing these grammars is a natural choice for achieving better expressibility and broader 
applicability.  
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Fig.14  An example of hypergraph for matrix decomposition 

4   Discussion 

As we have mentioned, traditional dependency graphs cannot capture the whole structures of the dependency 
graphs. For expressing the intricate dependency constraints among up to thousands of nodes and deducting some 
crucial properties by analyzing the structures of these graphs, traditional graphs have intrinsic weakness because 
they cannot be used to obtain structural information concerning with different components in the graphs by applying 
some systematic methods. Furthermore, visual environments and visual tools may require another more complex 
method to facilitate the manipulation of dependency graphs. By introducing the graph grammar method, we can 
figure out the semantic characteristics of the dependency graphs and deduct some other properties by applying a 
formal deduction method, which is impossible by just analyzing the traditional node and edge connecting graphs. 
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In this paper we use graph grammars to represent all kinds of dependency graphs, thus providing a united 
model for these graphs. Graph grammars in general provide an intuitive description for the manipulation of graphs 
and graphical structures in various kinds of software and systems such as parallel computing systems relying 
heavily on parallelism identification. In most of these cases, grammars allow one to give a formal graphical 
specification which can be executed as far as corresponding graph grammar tools are available. 

Formally, let Σ be an alphabet of node labels and Γ an alphabet of edge labels. A graph over Σ and Γ is a tuple 
H = (V, E, λ), where V is the finite set of nodes, E ⊆ {(v, γ, w) | v, w ∈ V, v ≠ w, γ ∈ Γ} is the set of edges, and λ: V 
-> Σ is the node labeling function. Take node replacement as an example. The derivation process of C-edNCE is just 
like that of the general context-free string grammars, and derivation tree whose vertices labeled by production (i.e. 
root is labeled X -> (D, C) will correspond to the derivations starting from X. The resulting graphs can be yielded in 
a top-down fashion such as using the associated leftmost derivations with derivation trees. 

Particularly, in this paper, after the derivation of graph grammars for extracting parallelism, theoretical results 
for graph grammars are useful for analysis, correctness and consistency proofs of such problem. At present, the 
so-called DPO (double-pushout) approach and SPO (single-pushout) approach are the most used algebraic 
approaches to formulate rewriting steps by gluing constructions. DPO is modeled indeed by two gluing diagrams in 
the category and total graph morphisms; while SPO defines a basic derivation step as a single pushout in the 
category of graphs and partial graph morphisms. Note that the algebraic approaches are characterized by the use of 
categorical notions for the very basic definitions of graph transformation rules, of match, and of rule applications. A 
detailed description of these two methods can be found in Ref.[4]. 

Compared with traditional models in which the information of each node and each edge must be stored, our 
graph grammar based method needs to store the productions only, and these productions can be used to generate all 
kinds of dependency graphs with various sizes while the structures of the graphs are still maintained. 

5   Conclusions 

In the domain of parallel and distributed computing, especially to the problem of parallelism extraction such as 
dependency detection and expression, there exists no satisfactory results based on the solid theoretical background 
such as graph grammar theory. Thus, in this paper, based on graph grammars, i.e. confluent edNCEs and HRs, we 
present some novel schemes to express data-flow graphs, control-flow graphs, combined control-data-flow graphs, 
bipartite graphs and hyperedge graphs. Due to the fact that graphs are a very natural way for explaining complex 
situations at an intuitive level, our results contribute to the design and implementation of parallel compilers or 
parallel languages in an easier and more efficient way. 
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