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Abstract: An efficient physically based surface sculpting method is presented in this paper for the interactive 
deformation of n-sided surfaces. By minimizing an energy functional, the user is able to deform a surface by 
applying different forms of forces directly, acting as virtual sculpting tools. The user is also able to define necessary 
geometric constraints, so as to further control the surface shape. Compared with the traditional method that a 
surface is deformed by moving the control points, this method is much more intuitive and still is very efficient. 
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1   Introduction 

Interactive sculpting of surfaces is an important subject of computer graphics and geometric modeling[1]. Due 
to the wide applications of parametric surfaces, such as Bézier and B-spline surfaces, shape control is 
conventionally performed through the use of the control points. However, deforming or sculpting a complex object is 
often not trivial, if the control points are used alone. Indeed it can be extremely tedious and time-consuming, if not 
impossible. Many researchers have devoted a great amount of effort to make such a task more intuitive. The 
free-form deformations (FFDs), developed by Sederberg and Parry[2] was one of the earliest attempts along this line. 
It still is the most widely used deformation tool implemented by many geometric modeling and animation packages. 
This method was later improved by Hsu et al [3]. to allow a direct manipulation of the geometry. Using this method, 
the user is able to pick up a point on a surface and move it to a new location directly. The manipulation of the control 
lattice is calculated automatically. Other approaches, such as those proposed by Fowler & Bartels[4], share the same idea 
that the user can deform the geometry directly rather than through the use of the control points. These direct 
manipulation methods, despite being useful in many applications, are purely geometric, i.e. no physical properties and 
their effects on the surfaces or objects are considered. 

Physically based surface sculpting techniques are different in that the physical properties are closely linked to 
the outcome. Usually an energy functional is formulated on the assumption that a surface or an object reaches the 
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rest shape when its overall energy becomes minimum. Based on this understanding, a surface patch can be sculpted 
by applying synthetic forces directly on it, as if they were from some kind of sculpting tools. Below this intuitive 
user-interaction layer, the new positions of the control points of the surface patch are automatically computed. 
Several methods were proposed by a number of researchers including Chui & Lai[5], Essa et al.[6], and Fowler & 
Bartels[4]. Understandably, the introduction of physics laws makes the surface sculpting process more flexible and 
more intuitive. 

Although there have been a number of physically based surface sculpting approaches reported in the literature, 
they are all concerned with surfaces composed of regular 3 or 4-sided patches, such as B-spline or NURBS 
surfaces[7~11]. Physically based modeling of irregular n-sided surfaces is still a gap, in spite of their indispensable 
position in geometric modeling, computer aided design and computer animation[12~17]. 

In this paper, we are proposing such a method, so that physical properties can be assigned to any irregular 
n-sided surface patches. With our method, the user will be able to deform an irregular patch using different forms of 
synthetic forces. The update of the control points of the patch will be calculated automatically by minimizing the 
overall surface energy. This method will also automatically satisfy the geometric constraints, which include the 
points and curves the surface patch has to pass through. 

Both these constraints and the forces can be used as user-interface handles for surface sculpting. Compared 
with the conventional approach of directly moving the control points, the method presented here produces more 
natural deformations and are more intuitive to operate. It can move a number of control points simultaneously to 
achieve a desirable surface shape. 

2   n-Sided Patches and Energy Functional 

An n-sided control point surface of degree m can be defined as follows 
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where ),...,,( 21 nλλλ=λ  represents the n-ple subscripts. ),...,,( 21 nuuu=u  represents the n parameters of which 
only two are independent.  stands for a control point in 3D-space λr 3, as shown in Fig.1.  is the 

associated basis function. The total number l of the control points is given by 
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Fig.1  Control points and 3-sided surface m=4

For a detailed description of the n-sided control point surfaces, the reader is referred to Refs.[16,17]. 
The final deformed shape of a surface is the result of minimizing its potential energy. Based on the energy 
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model of a tensioned thin plate[8,10,18], the following energy functional for an n-sided surface is suggested in this 
work 

21 EEE −=                      (3) 

( ) ( )[ ] vuβαE vvuvuuvu dd  )()(2)()()( 22222
1 ∫∫ ++++= uuuuu rrrrr      (4a) 

vuE dd)()(22 ufu ⋅= ∫∫ r                        (4b) 

where u and v are two independent variables. E2 represents the energy of the surface itself and its natural resistance 
to deformations. It is expressed as a weighted sum of its stretching and bending terms. α  and β  are 

non-negative and otherwise freely chosen coefficients. E2 represents the energy resulting from the applied forces. A 
force vector  is introduced here as a sculpting tool for the deformation of the n-sided surface. )(uf

The surface expression (1) can be rephrased as 

ZVr T=)(u ,                        (5) 

where V is the column vector of all control points and Z(u) is a column vector of all the Zheng & Ball[16] basis 
functions. 

Inserting (5) into the integral (4a) results in the following quadratic form 

KVVTE =1 ,                                 (6) 

where  is called the fairness norm. K, an  symmetric matrix, is called the stiffness matrix, whose entries 

are calculated by evaluating the integral (4a). This is given by 
1E ll ×

K= α K1+ β K2                            (7) 
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Once the degree, m, of an n-sided surface is given, the entries of the matrices K1 and K2 are constants 
evaluated from (8). 

Substituting (5) into (4b), we have 

FVTE 22 =                                (9) 

where V is the vector of the control points. And 

vudd)(uf⋅= ∫∫ ZF                        (10) 

is a column vector, called the force vector, whose entries are vectors in 3 taking the form . ∫∫ vuB dd)()( ufuλ

Combining (6) and (9), we have the following complete expression of the energy functional 

FVKVV TTE 2−=                    (11) 

Eq.(11) is a quadratic form with respect to the control point vectors V. Minimising (11) gives the following 
equation: 

FKV =                              (12) 
The solution to (12) is a set of control point vectors V used to generate the deformed n-sided surface. 
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3   User Interaction Handles——Physical Forces 

In the expression of the force vector 

vudd)(uf⋅= ∫∫ ZF                 (13) 

Z(u) is a column vector of all the Zheng & Ball[25] basis functions.  is the net effect of all the applied 
forces, which may be spring forces, repulsion forces, gravitational forces, inflation forces, etc. as discussed in Refs. 
[7,10,19,20]. The initial shape of the n-sided surface is defined by the control point vectors V

)(uf
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force density  of the distribution forces. Then by (12), we have 
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As a set of forces  makes the n-sided surface take a particular shape in the space )(0 uf 3, when we change 
these forces to a new value = + ) , the control point vectors will move to new locations 

V= . Inserting it into (13), we have 
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Considering (13) and (15) gives 
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)(uf∆  is the density of the distribution forces to be applied to the initial n-sided surface. Once  is given, a 

new set of control points V will arrive by the resolution of the linear system (16).  

)(uf∆

There are a number of different forms of forces we can use for sculpting a surface patch. In the following 
sections, we are discussing both the forms and their applications of the applied forces. 

3.1   Discrete forces 

For a force applied on a surface point ,  can be repressed as )( 0ur )(uf∆

)()()( 00 uuuufuf −−=∆ δ                   (17) 
where ),( 00 vvuu −−δ  is the delta function. 

A simple example is to connect a surface point  to a space point P with an ideal Hookean spring whose 

stiffness is k. Then we have 

)( 0ur

( ) )()()( 00 uuuuf −−=∆ δrPk                 (18) 

3.2   Continuous forces 

For a force applied on an area of the n-sided surface , )(ur )(uf∆  is expressed as 
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where D ⊂ 2 is an area in the domain of surface . )(ur
In practice, a force as a sculpting tool can be applied on an area surrounding a surface point  with 

radius 
)( 0ur

ρ . For such area forces, )(uf∆  can be expressed by (see Fig.2):  
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Fig.2  Alternative forces applied
 

4   Geometric Constraints 

Using synthetic forces as a sculpting tool can be nicely complimented by linear constraints. Constraints specify 
conditions that the surface has to satisfy and therefore provide extra user-interface tools for surface deformation. 
Such constraints usually include interpolated points, curves and surface normal constraints[7,19].  

The process of constraint satisfaction leads to the determination of some unknowns. In another word, this 
process reduces the degrees of freedom (DOF) of the whole system, and hence leaves fewer DOF for further 
manipulation. Considering the quadratic system (11), the solution to the constraints imposed on the surface will 
result in a smaller unconstrained system, of similar nature. Thus proper treatment of these constraints allows faster 
deformation to be produced.  

We suppose the number of constraints is less than the number of variables. Linear constraints are generally 
expressed as 

bA =V                     (21) 
where V is the vector of l variables (degree of freedom). A is a k× l matrix of coefficients, k is the number of 

constraints (k l). If k>l, there are redundant constraints in (21). Each row of the matrix A represents a linear 
constraint on V. 

≤

By solving system of constraints (21), the variable vector V will be transformed into a new one W where the 

number of variables is reduced from l to j. Here j=l-rank(A) ≤ l. 

Suppose ( ) is a set of basis vectors in the null space of Eq.(21). ig ji ,...,2,1= 0V  is a particular solution for 

Eq.(21). Then the general solution to (21) can be given by 
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We denote G , an l),...,,( 21 jggg= × j matrix formed by all basis vectors . W is a vector with j 

unconstrained variables . Then we have 
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As we have seen, redundant constraints in system (21) are removed in this process. 
Inserting Eq.(22) into the system (11), a new energy function with respect to the unconstrained variables W can 

be obtained as the following. 
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This is also a quadratic form with respect to W. Minimising it leads to the following solution 

0VW KGFGKGG TTT −=  

Inserting Eq.(15) into it, we have 

00 VW KGFGKGG TTT −= vuf∆GT dd)(u∫∫ ⋅+ Z      (23) 

Solving Eq.(23) gives a new set of control points for the resulting deformed surface.  
A special case: if no constraints exist, G is an identity matrix and therefore V = W in Eq.(22). System (23) is 

identical to system (16).  
In practice, the constraints may be:  

• Moving a surface point to a new position. Suppose a surface point  is to be moved to a 

new position , where  are the initial control points of the surface. Then, the following constraint must be 
added into Eq.(21). 
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That means a row of the matrix A corresponds to Eq.(24). 
• Preserving surface points. In the above case, if the new position is identical to the original point 

, then the following constraint must be added into Eq.(21). ∑=
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• Preserving surface curves. Suppose  is a curve on the initial surface, 

. If the surface interpolates the curve, following Ref.[7], the following constraints are added 
into Eq.(21):  
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For each control point, there is a constraint equation in (26). Typically, as mentioned in Ref.[7], most of these 
constraints are redundant. In the procedure of calculating the matrix G, the redundant constraints can be reduced.  

5   Calculation of Control Points 

In this section, let us discuss the solvability of system (23).  
In the literature, it was assumed that there were enough degrees of freedom in V to satisfy a constrained 

Eq.(21). In fact, this may not be true if too many constraints are introduced into the system. One way to increase the 
degrees of freedom in V is by degree elevation, which leaves enough DOF to satisfy the constraints in Eq.(21).  
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The symmetric stiff matrix K is semi-positive definite rather than positive definite. It is possible that the linear 
system (23) is not solvable. In this case, a least square solution to system (23) should be used instead.  

The calculation of the stiff matrix is a one-off task. It should not be considered as a sculpting cost. For each 
pair of n and m, we need only calculate it once. Therefore once the degree and number of sides of a surface are 
known, surface deformation can be achieved very quickly. In addition, by using the symmetry of the n-parameters 
as outlined below, the computation is even more efficient:  

(1) Setting nuuu === "21 , we can get the central point in the parametric domain.  

(2) In the domain of definition, subdivide the patch by connecting the central point with the middle point of 
each edge. This subdivides an n-sided patch into n 4-sided areas. 

(3) In each area, we integrate (8) using Gaussian formulae. 

6   Implementation 

We have implemented the above-described method on a PC workstation using the OpenGL library to render the 
surfaces. Although we haven’t calculated the exact sculpting time in the following examples, it won’t take a second 
to sculpt the models in a PIII800 PC workstation due to the fact that the stiff matrix is already prepared before the 
sculpting procedure.  

The procedure of surface deformation is shown as in Fig.3. Figure 3 (left) shows an initial 5-sided planar 
patch. In Fig.3 (middle) three upward forces and one downward force are applied on four surface points 
simultaneously as indicated by the arrows. Two circular points are preserved during the deformation of the surface. 
In Fig.3 (right), the forces are applied once more to make the surface deform further.  

Fig.3  (Left) Initial 5-sided patch. (Middle and right) Deformed 5-sided patch. Arrows 
show the forces applied on surface points. Circular points kept fixed during deforming 

The physically based method has also been applied to a model shown in Fig.4. Figure 4 (top) shows an initial 
model with 3- and 5-sided patches. As shown in Fig.4 (bottom), two forces are applied on two surface points (not 
control points) on the 5-sided surface patch. Arrows indicate the applied forces on surface points. While the 5-sided 
patch is deformed, its boundary curves and the surface normal along these curves are preserved. 

In Fig.5, a diagram is given to illustrate the procedure of the algorithm of surface deformation.  
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Surface to be 
deformed 

Surface with 
constraints 

Geometric  
constraints  
applied

Physical forces applied 

Minimizing 
surface 
energy 

     Deformed 

Fig.4  A model with 3- and 5-sided 
surface patches (left). Deformed model (right). 

Arrows show the forces applied on surface points Fig.5  Procedure of surface deformation 

7   Conclusions and Discussion 

In this paper, we have presented an efficient method for interactively sculpting irregular n-sided surfaces. By 
minimizing an energy functional, the control points of an n-sided surface are automatically computed. The applied 
forces and necessary geometric constraints can be used as user interface handles, and it is therefore much more 
intuitive and meaningful than direct moving the control points.  

Different types of forces are discussed and their expressions are given, which can be used as effective sculpting 
tools.  

Further research could involve the investigation of an efficient algorithm for the computation of the force 
vectors when continuous forces are applied. 
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塑造 n边形曲面的外形 

郑津津,  张建军 

(英国国家计算机动画中心, Bournemouth University, Poole BH12 5BB,英国) 

摘要: 提出了一种高效基于物理性质的算法来动态的塑造 n边形曲面的外形.这种算法是基于曲面的物理性质.通

过极小化一个能量泛函,用户能够直接使用不同形式的外力作为虚拟的塑造工具来改变 n边形曲面的外形.用户也

能够定义必要的几何约束来进一步控制曲面外形.与通常移动控制点的方法比较,这种基于物理性质的方法更直

观和有效. 
关键词: 基于物理性质的变形;n边形曲面;控制点;虚拟塑造;几何约束 
中图法分类号: TP391      文献标识码: A 
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