主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2022年专刊出版计划 微信服务介绍 最新一期:2021年第2期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
王璐,李青山,吕文琪,张河,李昊.基于事件关系保障识别质量的自适应分析方法.软件学报,2021,32(7):23-0
基于事件关系保障识别质量的自适应分析方法
Self-adaptation Analysis Method for Recognition Quality Assurance using Event Relationships
投稿时间:2020-09-15  修订日期:2020-10-26
DOI:10.13328/j.cnki.jos.006268
中文关键词:  自适应软件  质量保障  自适应分析方法  事件识别  贝叶斯网络
英文关键词:Self-Adaptive Software  Quality Assurance  Self-Adaptation Analysis Method  Event Recognition  Bayesian Network
基金项目:国家自然科学基金(61672401);国家自然科学基金(61972300);国家自然科学基金青年科学基金(61902288);陕西省自然科学基础研究计划(2020JQ-300)
作者单位E-mail
王璐 西安电子科技大学 计算机科学与技术学院, 陕西 西安 710071  
李青山 西安电子科技大学 计算机科学与技术学院, 陕西 西安 710071 qshli@mail.xidian.edu.cn 
吕文琪 西安电子科技大学 计算机科学与技术学院, 陕西 西安 710071  
张河 西安电子科技大学 计算机科学与技术学院, 陕西 西安 710071  
李昊 西安电子科技大学 计算机科学与技术学院, 陕西 西安 710071  
摘要点击次数: 178
全文下载次数: 87
中文摘要:
      目前自适应软件正在为众多领域系统提供着对运行环境的适应能力.如何建立一种能够保障识别质量的自适应分析方法,使之可从运行环境中快速且准确地识别出异常事件,是确保自适应软件长期稳定运行所必须考虑的研究问题之一.当前运行环境的不确定性给该问题的攻关带来两方面挑战:其一,现有分析方法一般通过预先建立环境状态与事件之间的映射关系以识别事件.但在系统运行前,已无法仅凭经验确定环境状态并建立全面且正确的映射关系.仅依赖映射关系建立分析方法的设计思路已无法保障识别准确性.其二,不确定环境何时会发生何种事件已变得不可预期.如果采用现有设计思路,定期获取环境状态再进行事件识别,则无法保障识别效率.然而目前却缺乏应对这些紧迫挑战的相关工作,因此本文提出了一种基于事件关系保障识别质量的自适应分析方法(Self-adaptation Analysis method For recognition quality assurance using Event Relationships,SAFER).SAFER采用序列模式挖掘算法、模糊故障树与贝叶斯网络等技术抽取并建模事件因果关系,并基于该类关系与映射关系通过贝叶斯网络的正向推理能力共同识别事件,与传统仅依赖映射关系的识别方法相比可保证识别准确性;基于贝叶斯网络的反向推理能力,确定易引发事件的精英感知对象,并动态调整获取精英感知对象状态数据的采样周期,以便于在事件发生后尽快获得相关环境状态,从而保障识别效率.实验结果表明,在自适应软件实际运行过程中,SAFER能实现对事件的识别并保障识别准确性与识别效率,为自适应软件稳定运行提供了有效支持.
英文摘要:
      At present, self-adaptive software is providing the ability to adapt to the operating environment for many systems in different fields.How to establish a self-adaptation analysis method which can recognize abnormal events at runtime quickly and achieve the recognition quality assurance, is one of the research issues that must be considered to ensure the long-term stable operation of the self-adaptive software. The uncertainty of the runtime environment brings two challenges to this problem. On the one hand, the analysis method usually recognizes the events by pre-establishing the mapping relationships between the environment state and the events. However, due to the complexity of the operating environment and the unknown changes, it is impossible to establish comprehensive and correct mapping relationships based on experience before the system is running, which affect the accuracy of event recognition; On the other hand, the changing operating environment makes it impossible to accurately predict when and which event will occur. If we use the current way to obtain the environmental status using constant sensing period and recognize events, then the recognition efficiency cannot be guaranteed. However, it is still blank about how to deal with these urgent challenges. Therefore, this paper proposes a Self-adaptation Analysis method For recognition quality assurance using Event Relationships (SAFER). SAFER uses Sequential Pattern mining algorithm、Fuzzy Fault Tree (FFT) and Bayesian Network (BN) to extract and model the causalities between events. This paper uses the event causal relationships and mapping relationships to recognize events through the BN forward reasoning, which can ensure the accuracy of recognition compared with the traditional analysis methods that only rely on mapping relationships. Moreover, this paper establishes the elitist set of monitoring objects through the BN backward reasoning, then modifies the sensing period of monitoring objects in elitist set dynamically in order to obtain the environmental status as soon as possible after the abnormal events occurred, so as to ensure the efficiency of recognition. The experimental results show that SAFER can effectively improve the accuracy and efficiency of the analysis process, and support long-term stable operation of self-adaptive software.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利