主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2022年专刊出版计划 微信服务介绍 最新一期:2021年第2期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
周小莉,赵建华.基于偶然正确性概率的回归测试选择方法.软件学报,2021,32(7):19-0
基于偶然正确性概率的回归测试选择方法
A Regression Test Selection Method Based on Coincidental Correctness Probability
投稿时间:2020-09-14  修订日期:2020-10-26
DOI:10.13328/j.cnki.jos.006264
中文关键词:  偶然正确性现象  回归测试  回归测试选择
英文关键词:coincidental correctness  regression testing  regression test selection
基金项目:
作者单位E-mail
周小莉 计算机软件新技术国家重点实验室(南京大学), 江苏 南京 210023  
赵建华 计算机软件新技术国家重点实验室(南京大学), 江苏 南京 210023 zhaojh@nju.edu.cn 
摘要点击次数: 153
全文下载次数: 55
中文摘要:
      数据驱动的智能系统的核心是处理数据的算法,对算法的正确性的要求高,导致其测试开销大,需要有效的缩减测试的规模,其中回归测试选择是控制测试规模的有效手段.数据驱动的智能系统由于其动态信息流强度弱的原因,发生偶然正确性现象的概率高,并且该现象会导致常用的回归测试选择技术所选择出的测试集包含大量检测不到故障的测试用例.因此,我们从偶然正确性现象的角度出发,提出一种基于偶然正确性概率的回归测试选择技术,进一步排除可能发生偶然正确性现象的用例.该方法能够兼顾代码覆盖,同时从偶然正确性的角度保证缩减后的测试用例集合对被修改的代码的测试是充分的.根据在用例缩减和故障检测能力之间侧重的不同,我们提出了基于最小化和安全性技术的两种选择策略,并给出三种具体的选择算法.在实验中将本文的方法与一种安全的测试选择技术进行比较,结果表明基于本文的三种选择算法都很好地缩减了测试集合的规模,提高了测试选择的精度,并提高了安全性和精度的综合指标.
英文摘要:
      For data-driven intelligent systems, the data processing algorithms are very important and need to be tested adequately. Because of the high safety requirement, the cost of testing becomes very high and need to be reduced. Regression test selection is an effective mean to control the scale of testing. For data-driven intelligent systems, the coincidental correctness happens frequently because of the weak dynamic information flows, and leads that the regression test sets contain a lot of redundant tests. Therefore, we propose a regression test selection technique based on the coincidental correctness probability. This method considers the probability of coincidental correctness in addition to the code coverage. The selected tests not only cover the modified code, but have a higher probability to transfer the intermediate results produced by the modified code to the program output. Such selection can reduce the impact of coincidental correctness. The empirical results show that our selection method can improve the precision of selection and reduce the size of the regression tests.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利