主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
谢肖飞,李晓红,陈翔,孟国柱,刘杨.基于符号执行与模糊测试的混合测试方法.软件学报,2019,30(10):3071-3089
基于符号执行与模糊测试的混合测试方法
Hybrid Testing Based on Symbolic Execution and Fuzzing
投稿时间:2018-08-29  修订日期:2018-10-31
DOI:10.13328/j.cnki.jos.005789
中文关键词:  软件质量保障  模糊测试  符号执行  测试用例生成
英文关键词:software quality assurance  fuzz testing  symbolic execution  test case generation
基金项目:国家自然科学基金(61572349,61272106)
作者单位E-mail
谢肖飞 天津市先进网络重点实验室(天津大学), 天津 300050  
李晓红 天津市先进网络重点实验室(天津大学), 天津 300050 xiaohongli@tju.edu.cn 
陈翔 南通大学 计算机科学与技术学院, 江苏 南通 226019  
孟国柱 信息安全国家重点研究室(中国科学院 信息工程研究所), 北京 100093  
刘杨 School of Computer Science and Engineering, Nanyang Technological University 639798, Singapore  
摘要点击次数: 737
全文下载次数: 496
中文摘要:
      软件测试是保障软件质量的常用方法,如何获得高覆盖率是测试中十分重要且具有挑战性的研究问题.模糊测试与符号执行作为两大主流测试技术已被广泛研究并应用到学术界与工业界中,这两种技术都具有一定的优缺点:模糊测试随机变异生成测试用例并动态执行程序,可以执行并覆盖到较深的分支,但其很难通过变异的方法生成覆盖到复杂条件分支的测试用例.而符号执行依赖约束求解器,可以生成覆盖复杂条件分支的测试用例,但在符号化执行过程中往往会出现状态爆炸问题,因此很难覆盖到较深的分支.有工作已经证明,将符号执行与模糊测试相结合可以获得比单独使用模糊测试或者符号执行更好的效果.分析符号执行与模糊测试的优缺点,提出了一种基于分支覆盖将两种方法结合的混合测试方法——Afleer,结合双方优点从而可以生成具有更高分支覆盖率的测试用例.具体来说,模糊测试(例如AFL)为程序快速生成大量可以覆盖较深分支的测试用例,符号执行(例如KLEE)基于模糊测试的覆盖信息进行搜索,仅为未覆盖到的分支生成测试用例.为了验证Afleer的有效性,选取标准程序集LAVA-M以及实际项目oSIP作为评测对象,以漏洞检测能力以及覆盖能力作为评测指标.实验结果表明:(1)在漏洞检测能力上,Afleer总共可以发现755个漏洞,而AFL仅发现1个;(2)在覆盖能力上,Afleer在标准程序集上以及实际项目中都有不同程度的提升.其中,在oSIP中,Afleer比AFL在分支覆盖率上提高2.4倍,在路径覆盖率上提升6.1倍.除此之外,Afleer在oSIP中还检测出一个新的漏洞.
英文摘要:
      Software testing is a common way to guarantee software quality. How to achieve high coverage is a very important and challenging goal in testing. Fuzz testing and symbolic execution, as two mainstream testing techniques, have been widely studied and applied to academia and industry, both technologies have certain advantages and limitations. Fuzz testing can execute and cover deeper branches by randomly mutating test cases and dynamically executing programs. However, it is difficult to generate test cases that can cover complex conditional branches by random mutation. Symbolic execution can cover complex conditional branches with SMT solvers, but it is difficult to cover deeper branches due to state explosion during symbolic execution. Current works have shown that hybrid testing involving fuzzing and symbolic execution can archive better performance than fuzzing or symbolic execution. By analyzing the advantages and disadvantages in fuzzing and symbolic execution, this study proposes a branch coverage-based hybrid testing approach that combines the two methods with each other to achieve better test cases with high branch coverage. Specifically, fuzz testing (e.g., AFL) quickly generates a large number of test cases that can cover deeper branches, and symbolic execution (e.g., KLEE) performs a search based on the coverage of fuzz testing, and generating test cases for uncovered branches. To evaluate the effectiveness of Afleer, the study selects the standard benchmark LAVA-M and one real project oSIP as the evaluation object, and uses bug detection and coverage as the evaluation measures. The experimental results show that:1) For bug discovery, Afleer found 755 bugs while AFL only found 1; 2) For coverage, Afleer achieved some improvement on benchmarks and real project. In the project oSIP, Afleer increases the branch coverage by 2.4 times and the path coverage by 6.1 times. In addition, Afleer found a new bug in oSIP.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利