主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2022年专刊出版计划 微信服务介绍 最新一期:2021年第2期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
王佳欣,朱志亮,邓小明,马翠霞,王宏安.基于深度学习的手绘草图分割算法综述.软件学报,0,(0):0
基于深度学习的手绘草图分割算法综述
Sketch Segmentation Algorithm Based on Deep Learning: A Survey
投稿时间:2020-08-07  修订日期:2020-09-02
DOI:10.13328/j.cnki.jos.006299
中文关键词:  草图分割综述  草图感知聚类  草图语义分割  草图解析
英文关键词:sketch segmentation survey  sketch perceptual grouping  sketch semantic segmentation  sketch parsing
基金项目:国家重点研发计划(2016YFB1001200);国家自然科学基金(61872346)
作者单位E-mail
王佳欣 中国科学院大学 计算机科学与技术学院, 北京 100190
计算机科学国家重点实验室、人机交互北京市重点实验室, 北京 100190 
 
朱志亮 计算机科学国家重点实验室、人机交互北京市重点实验室, 北京 100190
华东交通大学 软件学院, 江西 南昌 330013 
 
邓小明 计算机科学国家重点实验室、人机交互北京市重点实验室, 北京 100190  
马翠霞 中国科学院大学 计算机科学与技术学院, 北京 100190
计算机科学国家重点实验室、人机交互北京市重点实验室, 北京 100190 
cuixia@iscas.ac.cn 
王宏安 中国科学院大学 计算机科学与技术学院, 北京 100190
计算机科学国家重点实验室、人机交互北京市重点实验室, 北京 100190 
 
摘要点击次数: 351
全文下载次数: 201
中文摘要:
      手绘草图一直是人类传递信息的重要工具之一.手绘草图可以通过简单明了的形式更快地表达人类的一些复杂思想,因此对手绘草图的研究也一直是计算机视觉领域的研究热点之一.目前对手绘草图的研究主要集中在识别、检索和补全等方面.随着研究者对于手绘草图细粒度操作的重视,对于手绘草图分割方面的研究也得到越来越多的关注.近年来,随着深度学习与计算机视觉技术的发展,出现了大量基于深度学习的手绘草图分割方法,手绘草图分割的精确度和效率也都得到了较大提升.但是,由于手绘草图自身的抽象性、稀疏性和多样性,手绘草图分割仍然是一个非常具有挑战性的课题.目前,国内很少有关于手绘草图分割的综述.针对这个不足,本文对基于深度学习的手绘草图分割算法进行整理、分类、分析和总结,首先阐述了三种基本的草图表示方法与常用的草图分割数据集,再按草图分割算法的预测结果分别介绍了草图语义分割、草图感知聚类与草图解析算法,然后在主要的数据集上收集与整理草图分割算法的评测结果并对结果进行分析,最后总结了草图分割相关的应用并探讨未来可能的发展方向.
英文摘要:
      Free-hand sketches have always been one of the important tools for human communication. As it can express some complex human thoughts quickly in a succinct form, the study of free-hand sketches has always been one of the research hotspots in the field of computer vision. Currently, the research on free-hand sketches mainly focuses on the recognition, retrieval and completion. As researchers focus on the fine-grained operation of free-hand sketches, research on free-hand sketch segmentation has also received more and more attention. In recent years, with the development of deep learning and computer vision technology, a large number of free-hand sketch segmentation methods based on deep learning have been proposed. Moreover, the accuracy and efficiency of free-hand sketch segmentation have also been significantly increased. However, free-hand sketch segmentation is still a very challenging topic because of the abstraction, sparsity and diversity of free-hand sketches. At present, there are few Chinese reviews on hand-drawn sketch segmentation. This paper organizes, categorizes, analyzes and summarizes the free-hand sketch segmentation algorithm based on deep learning to solve the above deficiency. Firstly, Show three basic sketch representation methods and commonly used sketch segmentation datasets. According to the sketch segmentation algorithm prediction results, introduce sketch semantic segmentation, sketch perceptual grouping and sketch parsing respectively. Moreover, Collect and arrange the evaluation results of sketch segmentation on the primary data sets. Finally, summarize the application of sketch segmentation and discuss the possible future development direction.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利