主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2022年专刊出版计划 微信服务介绍 最新一期:2021年第4期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
谢贵才,段磊,蒋为鹏,肖珊,徐一凡.多尺度时序依赖的校园公共区域人流量预测.软件学报,2021,32(3):831-844
多尺度时序依赖的校园公共区域人流量预测
Pedestrian Volume Prediction for Campus Public Area Based on Multi-scale Temporal Dependency
投稿时间:2020-07-21  修订日期:2020-09-03
DOI:10.13328/j.cnki.jos.006183
中文关键词:  公共区域人流量预测  多尺度时序依赖  卷积神经网络  多组件融合
英文关键词:pedestrian volume prediction in public area  multi-scale temporal dependency  convolution network  multi-component fusion
基金项目:国家自然科学基金(61972268)
作者单位E-mail
谢贵才 四川大学 计算机学院, 四川 成都 610065  
段磊 四川大学 计算机学院, 四川 成都 610065 leiduan@scu.edu.cn 
蒋为鹏 四川大学 计算机学院, 四川 成都 610065  
肖珊 四川大学 计算机学院, 四川 成都 610065  
徐一凡 四川大学 计算机学院, 四川 成都 610065  
摘要点击次数: 551
全文下载次数: 353
中文摘要:
      校园公共区域人流量预测对于维护校园安全、提升校园管理水平有重大意义.尤其在疫情防控下,高校复学对公共区域的人流量预测和控制提出了更高的要求.以高校食堂为例,通过预测就餐人数,有助于食堂防疫人员合理调度和安排,既降低了人群聚集的潜在风险,也可以针对食堂人流量分布情况提供分时分批服务.然而,由于校园管理需求,如节假日和教学安排等因素,使得校园公共区域人流量预测问题颇具挑战性.为此,提出一种基于深度学习的多尺度时序卷积网络MSCNN (multi-scale temporal patterns convolution neural networks),实现人流量时序数据中短时依赖、长时周期模式的获取和多尺度时序模式特征的重标定,以对任意时段人流量进行预测.通过在真实校园环境数据集以及公开数据集上的实验,验证了MSCNN模型的有效性和执行效率.
英文摘要:
      Predicting pedestrian volume in campus public area is of significance for maintaining campus safety and improving campus management level. In particular, due to the outbreak of epidemic, the resumption of college education has put forward higher requirements for the prediction and control of the pedestrian volume in public area. Taking college canteens as an example, predicting the pedestrian volume in canteen is helpful with canteen epidemic prevention worker to make scheduling and arrangement, which not only reduces the risk of crowd gathering, but also provides more considerate service according to the distribution of the pedestrian volume in canteen. Considering the requirements of campus management, e.g., holiday, course arrangement, pedestrian volume prediction in the campus public area is challenging. This study proposes a multi-scale temporal patterns convolution neural networks (MSCNN) based on deep learning to obtain the short-term dependencies as well as long-term periodicities, and reweights the multi-scale temporal pattern characteristics to predict the pedestrian volume at any given time. The effectiveness and efficiency of the MSCNN model are verified by experiments on real-world datasets.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利