深度伪造与检测技术综述
作者:
作者简介:

李旭嵘(1992-),男,博士,主要研究领域为人工智能安全,对抗学习.
纪守领(1986-),男,博士,研究员,博士生导师,CCF专业会员,主要研究领域为人工智能与安全,数据驱动安全,IoT安全,软件与系统安全,大数据分析.
吴春明(1967-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为网络体系结构,可重构网络与虚拟化,软件定义网络,网络空间内生安全.
刘振广(1988-),男,博士,研究员,CCF专业会员,主要研究领域为视频图像处理,多媒体,区块链.
邓水光(1979-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为服务计算,边缘计算.
程鹏(1982-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为控制系统安全,物联网,数据安全.
杨珉(1979-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为智能系统安全.
孔祥维(1963-),女,博士,教授,博士生导师,CCF高级会员,主要研究领域为人工智能安全和可解释,非结构数据分析,跨媒体检索和哈希,数据驱动的决策.

通讯作者:

纪守领,Email:sji@zju.edu.cn

基金项目:

国家重点研发计划(2018YFB0804102,2020YFB1804705);浙江省自然科学基金(LR19F020003);浙江省重点研发计划(2019C01055,2020C01021);国家自然科学基金(61772466,U1936215,U1836202);前沿科技创新专项(2019QY(Y)0205)


Survey on Deepfakes and Detection Techniques
Author:
Fund Project:

National Key Research and Development Program of China (2018YFB0804102, 2020YFB1804705); Zhejiang Provincial Natural Science Foundation (LR19F020003); Zhejiang Provincial Key Research and Development Program (2019C01055, 2020C01021); National Natural Science Foundation of China (61772466, U1936215, U1836202); Frontier Science and Technology Innovation Project (2019QY(Y)0205)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [152]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    深度学习在计算机视觉领域取得了重大成功,超越了众多传统的方法.然而近年来,深度学习技术被滥用在假视频的制作上,使得以Deepfakes为代表的伪造视频在网络上泛滥成灾.这种深度伪造技术通过篡改或替换原始视频的人脸信息,并合成虚假的语音来制作色情电影、虚假新闻、政治谣言等.为了消除此类伪造技术带来的负面影响,众多学者对假视频的鉴别进行了深入的研究,并提出一系列的检测方法来帮助机构或社区去识别此类伪造视频.尽管如此,目前的检测技术仍然存在依赖特定分布数据、特定压缩率等诸多的局限性,远远落后于假视频的生成技术.并且不同学者解决问题的角度不同,使用的数据集和评价指标均不统一.迄今为止,学术界对深度伪造与检测技术仍缺乏统一的认识,深度伪造和检测技术研究的体系架构尚不明确.回顾了深度伪造与检测技术的发展,并对现有研究工作进行了系统的总结和科学的归类.最后讨论了深度伪造技术蔓延带来的社会风险,分析了检测技术的诸多局限性,并探讨了检测技术面临的挑战和潜在研究方向,旨在为后续学者进一步推动深度伪造检测技术的发展和部署提供指导.

    Abstract:

    Deep learning has achieved great success in the field of computer vision, surpassing many traditional methods. However, in recent years, deep learning technology has been abused in the production of fake videos, making fake videos represented by Deepfakes flooding on the Internet. This technique produces pornographic movies, fake news, political rumors by tampering or replacing the face information of the original videos and synthesizes fake speech. In order to eliminate the negative effects brought by such forgery technologies, many researchers have conducted in-depth research on the identification of fake videos and proposed a series of detection methods to help institutions or communities to identify such fake videos. Nevertheless, the current detection technology still has many limitations such as specific distribution data, specific compression ratio, and so on, far behind the generation technology of fake video. In addition, different researchers handle the problem from different angles. The data sets and evaluation indicators used are not uniform. So far, the academic community still lacks a unified understanding of deep forgery and detection technology. The architecture of deep forgery and detection technology research is not clear. In this review, the development of deep forgery and detection technologies are reviewed. Besides, existing research works are systematically summarize and scientifically classified. Finally, the social risks posed by the spread of Deepfakes technology are discussed, the limitations of detection technology are analyzed, and the challenges and potential research directions of detection technology are discussed, aiming to provide guidance for follow-up researchers to further promote the development and deployment of Deepfakes detection technology.

    参考文献
    [1] Deepfakes. 2019. https://github.com/deepfakes/faceswap
    [2] Zao app. 2019. https://zao-app.com/
    [3] Deepfake detection challenge. 2020. https://www.kaggle.com/c/deepfake-detection-challenge
    [4] Girish N, Nandini C. A review on digital video forgery detection techniques in cyber forensics. Science, Technology and Development, 2019,3(6):235-239.
    [5] Nguyen TT, Nguyen CM, Nguyen DT, Nguyen DT, Nahavandi S. Deep learning for Deepfakes creation and detection. arXiv preprint arXiv:1909.11573, 2019.
    [6] Zollhöfer M, Thies J, Garrido P, Bradley D, Beeler T, Perez P, Stamminger M, Niessner M, Theobalt C. State of the art on monocular 3D face reconstruction, tracking, and applications. Computer Graphics Forum, 2018,37(2):523-550.
    [7] FaceSwap. 2019. https://github.com/MarekKowalski/FaceSwap/
    [8] Dale K, Sunkavalli K, Johnson MK, Vlasic D, Matusik W, Pfister H. Video face replacement. In:Proc. of the SIGGRAPH Asia Conf. 2011. 1-10.
    [9] Garrido P, Valgaerts L, Rehmsen O, Thormae T, Perez P, Theobalt C. Automatic face reenactment. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2014. 4217-4224.
    [10] Garrido P, Valgaerts L, Sarmadi H, Steiner I, Varanasi K, Perez P, Theobalt C. VDub:Modifying face video of actors for plausible visual alignment to a dubbed audio track. Computer Graphics Forum, 2015,34(2):193-204.
    [11] Nirkin Y, Masi I, Tuan AT, Hassner T, Medioni G. On face segmentation, face swapping, and face perception. In:Proc. of the 13th IEEE Int'l Conf. on Automatic Face and Gesture Recognition (FG 2018). IEEE, 2018. 98-105.
    [12] Lu Z, Li Z, Cao J, He R, Sun Z. Recent progress of face image synthesis. In:Proc. of the 4th IAPR Asian Conf. on Pattern Recognition (ACPR). IEEE, 2017. 7-12.
    [13] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courvile A, Bengio Y. Generative adversarial nets. In:Proc. of the Advances in Neural Information Processing Systems. 2014. 2672-2680.
    [14] Faceswap-GAN. 2019. https://github.com/shaoanlu/faceswap-GAN
    [15] Korshunova I, Shi W, Dambre J, Theis L. Fast face-swap using convolutional neural networks. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2017. 3677-3685.
    [16] Nirkin Y, Keller Y, Hassner T. FSGAN:Subject agnostic face swapping and reenactment. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2019. 7184-7193.
    [17] Choi Y, Choi M, Kim M, Ha J, Kin S, Choo J. StarGAN:Unified generative adversarial networks for multi-domain image-to- image translation. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 8789-8797.
    [18] Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Netaxas D. StackGAN++:Realistic image synthesis with stacked generative adversarial networks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018,41(8):1947-1962.
    [19] Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of GANs for improved quality, stability, and variation. In:Proc. of the 6th Int'l Conf. on Learning Representations (ICLR). 2018.
    [20] Antipov G, Baccouche M, Dugelay JL. Face aging with conditional generative adversarial networks. In:Proc. of the IEEE Int'l Conf. on Image Processing (ICIP). IEEE, 2017. 2089-2093.
    [21] Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
    [22] Huang R, Zhang S, Li T, He R. Beyond face rotation:Global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2017. 2439-2448.
    [23] Thies J, Zollhöfer M, Nießner M, Valgaerts L, Stamminger M, Theobalt C. Real-time expression transfer for facial reenactment. ACM Trans. on Graphics (TOG), 2015,34(6):Article No.183.
    [24] Thies J, Zollhofer M, Stamminger M, Theobalt C, Niebner M. Face2face:Real-time face capture and reenactment of RGB videos. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 2387-2395.
    [25] Thies J, Zollhöfer M, Theobalt C, Stamminger M, Niessner M. Headon:Real-time reenactment of human portrait videos. ACM Trans. on Graphics (TOG), 2018,37(4):1-13.
    [26] Kim H, Garrido P, Tewari A, Xu W, Thies J, Niessner M, Perez P, Richardt C, Zollhofer M, Theobalt C. Deep video portraits. ACM Trans. on Graphics (TOG), 2018,37(4):1-14.
    [27] Thies J, Zollhöfer M, Nießner M. Deferred neural rendering:Image synthesis using neural textures. ACM Trans. on Graphics (TOG), 2019,38(4):1-12.
    [28] Suwajanakorn S, Seitz SM, Kemelmacher-Shlizerman I. Synthesizing Obama:Learning lip sync from audio. ACM Trans. on Graphics (TOG), 2017,36(4):1-13.
    [29] Zakharov E, Shysheya A, Burkov E, Lempitsky V. Few-shot adversarial learning of realistic neural talking head models. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2019. 9459-9468.
    [30] Fried O, Tewari A, Zollhöfer M, Finkelstein A, Shechtman E, Goldman D, Genova K, Jin Z, Theobalt C, Agrawala M. Text-based editing of talking-head video. ACM Trans. on Graphics (TOG), 2019,38(4):1-14.
    [31] Averbuch-Elor H, Cohen-Or D, Kopf J, Cohen M. Bringing portraits to life. ACM Trans. on Graphics (TOG), 2017,36(6):Article No.196.
    [32] Lample G, Zeghidour N, Usunier N, Bordes A, Denoyer L, Ranzato M. Fader networks:Manipulating images by sliding attributes. In:Proc. of the Advances in Neural Information Processing Systems. 2017. 5967-5976.
    [33] Van Den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior AW, Kavukcuoglu K. Wavenet:A generative model for raw audio. In:Proc. of the 9th Speech Synthesis Workshop. 2016.
    [34] Arik S, Chrzanowski M, Coates A, Diamos G, Kang Y, Li X, Miller J, Ng A, Raiman J, Sengupta S, Shoeybi M. Deep voice:Real-time neural text-to-speech. In:Proc. of the 34th Int'l Conf. on Machine Learning. 2017. 195-204.
    [35] Wang Y, Skerry-Ryan RJ, Stanton D, Wu Y, Weiss R, Jaitly N, Yang Z, Xiao Y, Chen Z, Bengio S, Le Q, Agiomyrgiannakis Y, Clark B, Saurous R. Tacotron:Towards end-to-end speech synthesis. In:Proc. of the Interspeech 2017, 18th Annual Conf. of the Int'l Speech Communication Association. 2017. 4006-4010.
    [36] Arik S, Diamos G, Gibiansky A, Miller J, Peng K, Ping W, Raiman J, Zhou Y. Deep voice 2:Multi-speaker neural text-to-speech. In:Proc. of the Advances in Neural Information Processing Systems. 2017. 2962-2970.
    [37] Ping W, Peng K, Gibiansky A, Arik S, Kannan A, Narang S. Deep voice 3:2000-speaker neural text-to-speech. In:Proc. of the ICLR. 2018. 214-217.
    [38] Pascual S, Bonafonte A, Serra J. SEGAN:Speech enhancement generative adversarial network. In:Proc. of the Interspeech 2017, 18th Annual Conf. of the Int'l Speech Communication Association. 2017. 3642-3646.
    [39] Donahue C, McAuley J, Puckette M. Adversarial audio synthesis. In:Proc. of the 7th Int'l Conf. on Learning Representations (ICLR). 2019.
    [40] Li XR, Yu K. A Deepfakes detection technique based on two-stream network. Journal of Cyber Security, 2020,5(2):84-91(in Chinese with English abstract).
    [41] FakeApp. 2019. https://www.deepfakescn.com
    [42] Faceapp. 2019. https://www.faceapp.com/
    [43] DeepFaceLab. 2019. https://github.com/iperov/DeepFaceLab
    [44] Dfaker. 2019. https://github.com/dfaker/df
    [45] DeepFake-tf. 2019. https://github.com/StromWine/DeepFake-tf
    [46] Faceswap-Deepfake-Pytorch. 2019. https://github.com/Oldpan/Faceswap-Deepfake-Pytorch
    [47] Deep-voice-conversion. 2020. https://github.com/andabi/deep-voice-conversion
    [48] MelNet. 2020. https://sjvasquez.github.io/blog/melnet/
    [49] Matern F, Riess C, Stamminger M. Exploiting visual artifacts to expose Deepfakes and face manipulations. In:Proc. of the IEEE Winter Applications of Computer Vision Workshops (WACVW). IEEE, 2019. 83-92.
    [50] Rössler A, Cozzolino D, Verdoliva L, Christian R, Justus T, Matthias N. Faceforensics:A large-scale video dataset for forgery detection in human faces. arXiv preprint arXiv:1803.09179, 2018.
    [51] Rossler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Niessner M. Faceforensics++:Learning to detect manipulated facial images. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2019. 1-11.
    [52] Korshunov P, Marcel S. Deepfakes:A new threat to face recognition? Assessment and detection. arXiv preprint arXiv:1812.08685, 2018.
    [53] VidTIMIT. 2019. http://conradsanderson.id.au/vidtimit/
    [54] Afchar D, Nozick V, Yamagishi J, Echizen I. Mesonet:A compact facial video forgery detection network. In:Proc. of the IEEE Int'l Workshop on Information Forensics and Security (WIFS). IEEE, 2018. 1-7.
    [55] Li Y, Yang X, Sun P, Qi H, Lyu S. Celeb-DF:A new dataset for Deepfake forensics. arXiv preprint arXiv:1909.12962, 2019.
    [56] DeepfakeDetection. 2019. https://github.com/ondyari/FaceForensics
    [57] Dolhansky B, Howes R, Pflaum B, Baram N, Ferrer C. The Deepfake detection challenge (DFDC) preview dataset. arXiv preprint arXiv:1910.08854, 2019.
    [58] DFDC. 2020. https://www.kaggle.com/c/deepfake-detection-challenge/data
    [59] Jiang L, Li R, Wu W, Qian C, Loy C. DeeperForensics-1.0:A large-scale dataset for real-world face forgery detection. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2020. 2886-2895.
    [60] ASVspoof 2015 database. 2020. https://datashare.is.ed.ac.uk/handle/10283/853
    [61] ASVspoof 2019 database. 2020. https://datashare.is.ed.ac.uk/handle/10283/3336
    [62] Abu-El-Haija S, Kothari N, Lee J, Natsev P, Toderici G, Varadarajan B, Vijayanarasimhan S. Youtube-8m:A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675, 2016.
    [63] Amerini I, Ballan L, Caldelli R, Bimbo AD, Serra G. A sift-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. on Information Forensics and Security, 2011,6(3):1099-1110.
    [64] De Carvalho TJ, Riess C, Angelopoulou E, Pedrini H, Rocha A. Exposing digital image forgeries by illumination color classification. IEEE Trans. on Information Forensics and Security, 2013,8(7):1182-1194.
    [65] Lukáš J, Fridrich J, Goljan M. Detecting digital image forgeries using sensor pattern noise. In:Proc. of the Security, Steganography, and Watermarking of Multimedia Contents VⅢ, Vol.6072. Int'l Society for Optics and Photonics, 2006.
    [66] Chierchia G, Parrilli S, Poggi G, Verdoliva L, Sansone C. PRNU-based detection of small-size image forgeries. In:Proc. of the 17th Int'l Conf. on Digital Signal Processing (DSP). IEEE, 2011. 1-6.
    [67] Fridrich J, Kodovsky J. Rich models for steganalysis of digital images. IEEE Trans. on Information Forensics and Security, 2012, 7(3):868-882.
    [68] Wang W, Dong J, Tan T. Exploring DCT coefficient quantization effects for local tampering detection. IEEE Trans. on Information Forensics and Security, 2014,9(10):1653-1666.
    [69] Nataraj L, Sarkar A, Manjunath BS. Adding gaussian noise to "denoise" JPEG for detecting image resizing. In:Proc. of the 16th IEEE Int'l Conf. on Image Processing (ICIP). IEEE, 2009. 1493-1496.
    [70] Bianchi T, De Rosa A, Piva A. Improved DCT coefficient analysis for forgery localization in JPEG images. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. 2444-2447.
    [71] Pan X, Zhang X, Lyu S. Exposing image splicing with inconsistent local noise variances. In:Proc. of the IEEE Int'l Conf. on Computational Photography (ICCP). IEEE, 2012. 1-10.
    [72] Ferrara P, Bianchi T, De Rosa A, Piva A. Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. on Information Forensics and Security, 2012,7(5):1566-1577.
    [73] Cozzolino D, Verdoliva L. Noiseprint:A CNN-based camera model fingerprint. IEEE Trans. on Information Forensics and Security, 2019,15:144-159.
    [74] Zhou P, Han X, Morariu VI, Davis LS. Learning rich features for image manipulation detection. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 1053-1061.
    [75] Rao Y, Ni J. A deep learning approach to detection of splicing and copy-move forgeries in images. In:Proc. of the IEEE Int'l Workshop on Information Forensics and Security (WIFS). IEEE, 2016. 1-6.
    [76] Liu B, Pun CM. Deep fusion network for splicing forgery localization. In:Proc. of the European Conf. on Computer Vision (ECCV). 2018. 237-251.
    [77] Huh M, Liu A, Owens A, Efros A. Fighting fake news:Image splice detection via learned self-consistency. In:Proc. of the European Conf. on Computer Vision (ECCV). 2018. 101-117.
    [78] Cun X, Pun CM. Image splicing localization via semi-global network and fully connected conditional random fields. In:Proc. of the European Conf. on Computer Vision (ECCV). 2018. 252-266.
    [79] Cozzolino D, Poggi G, Verdoliva L. Recasting residual-based local descriptors as convolutional neural networks:An application to image forgery detection. In:Proc. of the 5th ACM Workshop on Information Hiding and Multimedia Security. 2017. 159-164.
    [80] Chen C, McCloskey S, Yu J. Focus manipulation detection via photometric histogram analysis. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 1674-1682.
    [81] Zhou P, Han X, Morariu VI, Davis LS. Two-stream neural networks for tampered face detection. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017. 1831-1839.
    [82] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 1-9.
    [83] Yang X, Li Y, Lyu S. Exposing deep fakes using inconsistent head poses. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. 8261-8265.
    [84] Yang X, Li Y, Qi H, Lyu S. Exposing GAN-synthesized faces using landmark locations. In:Proc. of the ACM Workshop on Information Hiding and Multimedia Security. 2019. 113-118.
    [85] Li Y, Chang MC, Lyu S. In ictu oculi:Exposing AI created fake videos by detecting eye blinking. In:Proc. of the IEEE Int'l Workshop on Information Forensics and Security (WIFS). IEEE, 2018. 1-7.
    [86] Ciftci UA, Demir I. FakeCatcher:Detection of synthetic portrait videos using biological signals. arXiv preprint arXiv:1901.02212, 2019.
    [87] Fernandes S, Raj S, Ortiz E, Vintila I, Salter M, Urosevic G, Jha S. Predicting heart rate variations of Deepfake videos using neural ODE. In:Proc. of the IEEE Int'l Conf. on Computer Vision Workshops. 2019. 1721-1729.
    [88] Li Y, Lyu S. Exposing Deepfake videos by detecting face warping artifacts. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019. 46-52.
    [89] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 770-778.
    [90] Nataraj L, Mohammed TM, Chandrasekaran S, Flenner A, Bappy JH, Roy-Chowdhury AK, Manjunath BS. Detecting GAN generated fake images using co-occurrence matrices. Electronic Imaging, 2019,2019(5):532-1-532-7.
    [91] Li H, Li B, Tan S, Huang J. Identification of deep network generated images using disparities in color components. arXiv preprint arXiv:1808.07276, 2018.
    [92] Xuan X, Peng B, Wang W, Dong J. On the generalization of GAN image forensics. In:Proc. of the Chinese Conf. on Biometric Recognition. Cham:Springer-Verlag, 2019. 134-141.
    [93] McCloskey S, Albright M. Detecting GAN-generated imagery using color cues. arXiv preprint arXiv:1812.08247, 2018.
    [94] Marra F, Gragnaniello D, Verdoliva L, Poggi G. Do GANs leave artificial fingerprints? In:Proc. of the IEEE Conf. on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2019. 506-511.
    [95] Yu N, Davis LS, Fritz M. Attributing fake images to GANs:Learning and analyzing GAN fingerprints. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2019. 7556-7566.
    [96] Wang R, Ma L, Juefei-Xu F, Xie X, Wang J, Liu Y. Fakespotter:A simple baseline for spotting ai-synthesized fake faces. In:Proc. of the 29th Int'l Joint Conf. on Artifical Intelligence (IJCAI). 2020. 3444-3451.
    [97] Chollet F. Xception:Deep learning with depthwise separable convolutions. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 1251-1258.
    [98] Songsri-in K, Zafeiriou S. Complement face forensic detection and localization with faciallandmarks. arXiv preprint arXiv:1910. 05455, 2019.
    [99] Nguyen HH, Yamagishi J, Echizen I. Capsule-forensics:Using capsule networks to detect forged images and videos. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP 2019). IEEE, 2019. 2307-2311.
    [100] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In:Proc. of the 3rd Int'l Conf. on Learning Representations (ICLR). 2015.
    [101] Mo H, Chen B, Luo W. Fake faces identification via convolutional neural network. In:Proc. of the 6th ACM Workshop on Information Hiding and Multimedia Security. 2018. 43-47.
    [102] Durall R, Keuper M, Pfreundt FJ, Keuper J. Unmasking DeepFakes with simple features. arXiv preprint arXiv:1911.00686, 2019.
    [103] Ding X, Raziei Z, Larson EC, Olinick EV, Krueger PS, Hahsler M. Swapped face detection using deep learning and subjective assessment. EURASIP Journal on Information Security, 2020(2020):Article No.6.
    [104] Cozzolino D, Thies J, Rössler A, Riess C, Niebner M, Verdoliva L. Forensictransfer:Weakly-supervised domain adaptation for forgery detection. arXiv preprint arXiv:1812.02510, 2018.
    [105] Nguyen HH, Fang F, Yamagishi J, Echizen I. Multi-task learning for detecting and segmenting manipulated facial images and videos. arXiv preprint arXiv:1906.06876, 2019.
    [106] Hsu CC, Lee CY, Zhuang YX. Learning to detect fake face images in the wild. In:Proc. of the Int'l Symp. on Computer, Consumer and Control (IS3C). IEEE, 2018. 388-391.
    [107] Hsu CC, Zhuang YX, Lee CY. Deep fake image detection based on pairwise learning. Applied Sciences, 2020,10(1):Article No.370.
    [108] Dang LM, Hassan SI, Im S, Lee J, Lee S, Moon H. Deep learning based computer generated face identification using convolutional neural network. Applied Sciences, 2018,8(12):Article No.2610.
    [109] Bayar B, Stamm MC. A deep learning approach to universal image manipulation detection using a new convolutional layer. In:Proc. of the 4th ACM Workshop on Information Hiding and Multimedia Security. 2016. 5-10.
    [110] Dang H, Liu F, Stehouwer J, Liu X, Jain A. On the detection of digital face manipulation. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2020. 5780-5789.
    [111] Rahmouni N, Nozick V, Yamagishi J, Echizen I. Distinguishing computer graphics from natural images using convolution neural networks. In:Proc. of the IEEE Workshop on Information Forensics and Security (WIFS). IEEE, 2017. 1-6.
    [112] Li X, Yu K, Ji S, Wang Y, Wu C, Xue H. Fighting against Deepfake:Patch&Pair convolutional neural networks (PPCNN). In:Proc. of the Companion Web Conf. 2020. 2020. 88-89.
    [113] Brockschmidt J, Shang J, Wu J. On the generality of facial forgery detection. In:Proc. of the IEEE 16th Int'l Conf. on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). IEEE, 2019. 43-47.
    [114] Sohrawardi SJ, Chintha A, Thai B, Seng S, Hickerson A, Ptucha R, Wright M. Poster:Towards robust open-world detection of Deepfakes. In:Proc. of the ACM SIGSAC Conf. on Computer and Communications Security. 2019. 2613-2615.
    [115] Agarwal S, Farid H, Gu Y, He M, Nagano K, Li H. Protecting world leaders against deep fakes. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops. 2019. 38-45.
    [116] Amerini I, Galteri L, Caldelli R, Bimbo AD. Deepfake video detection through optical flow based CNN. In:Proc. of the IEEE Int'l Conf. on Computer Vision Workshops. 2019. 1205-1207.
    [117] Güera D, Delp EJ. Deepfake video detection using recurrent neural networks. In:Proc. of the 15th IEEE Int'l Conf. on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2018. 1-6.
    [118] Sabir E, Cheng J, Jaiswal A, AbdAlmageed W, Masi I, Natarajan P. Recurrent convolutional strategies for face manipulation detection in videos. arXiv preprint arXiv:1905.00582, 2019.
    [119] Todisco M, Delgado H, Evans NWD. A new feature for automatic speaker verification anti-spoofing:Constant Q cepstral coefficients. In:Proc. of the Odyssey. 2016. 283-290.
    [120] Wu Z, Kinnunen T, Chng ES, Li H, Ambikairajah E. A study on spoofing attack in state-of-the-art speaker verification:The telephone speech case. In:Proc. of the Asia Pacific Signal and Information Processing Association Annual Summit and Conf. IEEE, 2012. 1-5.
    [121] Wu Z, Chng ES, Li H. Detecting converted speech and natural speech for anti-spoofing attack in speaker recognition. In:Proc. of the 13th Annual Conf. of the Int'l Speech Communication Association. 2012. 1700-1703.
    [122] Das RK, Yang J, Li H. Long range acoustic and deep features perspective on ASVspoof 2019. In:Proc. of the IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2019. 1018-1025.
    [123] Zeinali H, Stafylakis T, Athanasopoulou G, Rohdin J, Gkinis I, Burget L, Cernocky JH. Detecting spoofing attacks using VGG and SincNet:BUT-Omilia submission to ASVspoof 2019 challenge. In:Proc. of the 20th Annual Conf. of the Int'l Speech Communication Association. 2019. 1073-1077.
    [124] Schörkhuber C, Klapuri A. Constant-Q transform toolbox for music processing. In:Proc. of the 7th Sound and Music Computing Conf. Barcelona, 2010. 3-64.
    [125] Gomez-Alanis A, Peinado AM, Gonzalez JA, Gomez AM. A light convolutional GRU-RNN deep feature extractor for ASV spoofing detection. In:Proc. of the Interspeech 2019. 2019. 1068-1072.
    [126] Chen T, Kumar A, Nagarsheth P, Sivaraman G, Khoury E. Generalization of audio Deepfake detection. In:Proc. of the Odyssey 2020 Speaker and Language Recognition Workshop. 2020. 132-137.
    [127] Li R, Zhao M, Li Z, Li L, Hong Q. Anti-spoofing speaker verification system with multi-feature integration and multi-task learning. In:Proc. of the Interspeech. 2019. 1048-1052.
    [128] Goswami G, Ratha N, Agarwal A, Singh R, Vatsa M. Unravelling robustness of deep learning based face recognition against adversarial attacks. In:Proc. of the 32nd AAAI Conf. on Artificial Intelligence. 2018. 6829-6836.
    [129] Parkhi OM, Vedaldi A, Zisserman A. Deep face recognition. In:Proc. of the British Machine Vision Conf. (BMVC). BMVA Press, 2015. 41.1-41.12.
    [130] Baltrušaitis T, Robinson P, Morency LP. Openface:An open source facial behavior analysis toolkit. In:Proc. of the IEEE Winter Conf. on Applications of Computer Vision (WACV). IEEE, 2016. 1-10.
    [131] Li X, Ji S, Han M, Ji J, Ren Z, Liu Y, Wu C. Adversarial examples versus cloud-based detectors:A black-box empirical study. arXiv preprint arXiv:1901.01223, 2019.
    [132] Dong Y, Su H, Wu B, Li Z, Liu W, Zhang T, Zhu J. Efficient decision-based black-box adversarial attacks on face recognition. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2019. 7714-7722.
    [133] Song Q, Wu Y, Yang L. Attacks on state-of-the-art face recognition using attentional adversarial attack generative network. arXiv preprint arXiv:1811.12026, 2018.
    [134] Majumdar P, Agarwal A, Singh R, Vatsa M. Evading face recognition via partial tampering of faces. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops. 2019. 11-20.
    [135] Korshunov P, Marcel S. Vulnerability of face recognition to deep morphing. arXiv preprint arXiv:1910.01933, 2019.
    [136] Schroff F, Kalenichenko D, Philbin J. Facenet:A unified embedding for face recognition and clustering. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 815-823.
    [137] Szegedy C, Zaremba W, Sutskever I, Bruna J. Intriguing properties of neural networks. In:Proc. of the 2nd Int'l Conf. on Leaning Representations (ICLR). 2014.
    [138] Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. In:Proc. of the 3rd Int'l Conf. on Leaning Representations (ICLR). 2015.
    [139] Kurakin A, Goodfellow I, Bengio S. Adversarial examples in the physical world. In:Proc. of the 5th Int'l Conf. on Leaning Representations (ICLR) Workshop. 2017.
    [140] Wang SY, Wang O, Zhang R, Owens A, Efros AA. CNN-generated images are surprisingly easy to spot for now. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2020. 8692-8701.
    [141] Neves JC, Tolosana R, Vera-Rodriguez R, Vera-Rodriguez R, Lopes V, Proena H, Fierrez J. Ganprintr:Improved fakes and evaluation of the state-of-the-art in face manipulation detection. IEEE Journal of Selected Topics in Signal Processing, 2020,14(5):1038-1048.
    [142] Marra F, Gragnaniello D, Cozzolino D, Verdoliva L. Detection of GAN-generated fake images over social networks. In:Proc. of the IEEE Conf. on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2018. 384-389.
    [143] Zhang X, Karaman S, Chang SF. Detecting and simulating artifacts in GAN fake images. In:Proc. of the IEEE Int'l Workshop on Information Forensics and Security (WIFS). 2019. 1-6.
    [144] Du M, Pentyala S, Li Y, Hu X. Towards generalizable forgery detection with locality-aware autoencoder. arXiv preprint arXiv:1909.05999, 2019.
    [145] Huang R, Fang F, Nguyen HH, Yamagishi J, Echizen I. Security of facial forensics models against adversarial attacks. arXiv preprint arXiv:1911.00660, 2019.
    [146] Hall HK. Deepfake videos:When seeing isn't believing. Catholic University Journal of Law and Technology, 2018,27(1):Article No.51.
    [147] Hasan HR, Salah K. Combating deepfake videos using blockchain and smart contracts. IEEE Access, 2019,7:41596-41606.
    [148] The law of California to Deepfake. 2019. https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB730
    [149] Regulations of China Internet Information Office on the control of online content. 2020(in Chinese). http://www.cac.gov.cn/2019-12/20/c_1578375159509309.htm
    附中文参考文献:
    [40] 李旭嵘,于鲲.一种基于双流网络的Deepfakes检测技术.信息安全学报,2020,5(2):84-91.
    [149] 中国互联网信息办关于网络内容管控的规定. 2020. http://www.cac.gov.cn/2019-12/20/c_1578375159509309.htm
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李旭嵘,纪守领,吴春明,刘振广,邓水光,程鹏,杨珉,孔祥维.深度伪造与检测技术综述.软件学报,2021,32(2):496-518

复制
分享
文章指标
  • 点击次数:6224
  • 下载次数: 22719
  • HTML阅读次数: 9548
  • 引用次数: 0
历史
  • 收稿日期:2020-05-07
  • 最后修改日期:2020-06-22
  • 在线发布日期: 2020-09-10
  • 出版日期: 2021-02-06
文章二维码
您是第19793722位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号