面向图的异常检测研究综述
作者:
作者简介:

李忠(1987-),男,博士生,工程师,主要研究领域为社交网络计算,网络异常检测,知识图谱.
靳小龙(1976-),男,博士,研究员,博士生导师,CCF高级会员,主要研究领域为知识图谱,社会计算,大数据.
庄传志(1985-),男,博士生,工程师,CCF学生会员,主要研究领域为自然语言处理,知识图谱.
孙智(1985-),男,博士生,主要研究领域为图异常检测,知识图谱.

通讯作者:

靳小龙,E-mail:jinxiaolong@ict.ac.cn

基金项目:

国家重点研发计划(2016QY02D0404);国家自然科学基金(U1911401,61772501,U1836206,91646120)


Overview on Graph Based Anomaly Detection
Author:
Fund Project:

National Key Research and Development Program of China (2016QY02D0404); National Natural Science Foundation of China (U1911401, 61772501, U1836206, 91646120)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [98]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    近年来,随着Web 2.0的普及,使用图挖掘技术进行异常检测受到人们越来越多的关注.图异常检测在欺诈检测、入侵检测、虚假投票、僵尸粉丝分析等领域发挥着重要作用.在广泛调研国内外大量文献以及最新科研成果的基础上,按照数据表示形式将面向图的异常检测划分成静态图上的异常检测与动态图上的异常检测两大类,进一步按照异常类型将静态图上的异常分为孤立个体异常和群组异常检测两种类别,动态图上的异常分为孤立个体异常、群体异常以及事件异常这3种类型.对每一类异常检测方法当前的研究进展加以介绍,对每种异常检测算法的基本思想、优缺点进行分析、对比,总结面向图的异常检测的关键技术、常用框架、应用领域、常用数据集以及性能评估方法,并对未来可能的发展趋势进行展望.

    Abstract:

    In recent years, with the popularization of Web 2.0, people pay more and more attentions to the graph anomaly detection. The graph anomaly detection plays an increasingly vital role in the field of fraud detection, intrusion detection, false voting, and zombie fan analysis. This paper presents a survey on existing approaches to address this problem and reviews the recent developed techniques to detect graph anomalies. The graph-oriented anomaly detection is divided into two types, the anomaly detection on static graph and the anomaly detection on dynamic graph. Existing work on static graph anomaly detection have identified two types of anomalies:One is individual anomaly that refers to the abnormal behaviors of individual entity, the other is group anomaly that occurs due to unusual patterns of groups. The anomaly on dynamic graph can be divided into three types:Isolated individual anomaly, group anomaly, and event anomaly. This paper introduces the current research progress of each kind of anomaly detection methods, and summarizes the key technologies, common frameworks, application fields, common data sets, and performance evaluation methods of graph-oriented anomaly detection. Finally, future research directions on graph anomaly detection are discussed.

    参考文献
    [1] Moonesinghe HDK, Tan PN. Outrank:A graph-based outlier detection framework using random walk. Int'l Journal on Artificial Intelligence Tools, 2008,17(1):19-36.
    [2] Guo JY, Li RH, Zhang Y, Wang GR. Graph neural network based anomaly detection in dynamic networks. Ruan Jian Xue Bao/Journal of Software, 2020,31(3):748-762(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5903.htm[doi:10.13328/j.cnki.jos.005903]
    [3] Akoglu L, Tong H, Koutra D. Graph based anomaly detection and description:A survey. Data Mining and Knowledge Discovery, 2015,29(3):626-688.
    [4] Gogoi P, Bhattacharyya DK, Borah B, et al. A survey of outlier detection methods in network anomaly identification. The Computer Journal, 2011,54(4):570-588.
    [5] Gupta M, Gao J, Aggarwal CC, et al. Outlier detection for temporal data:A survey. IEEE Trans. on Knowledge and Data Engineering, 2014,26(9):2250-2267.
    [6] Ranshous S, Shen S, Koutra D, et al. Anomaly detection in dynamic networks:A survey. Wiley Interdisciplinary Reviews:Computational Statistics, 2015,7(3):223-247.
    [7] Yu R, Qiu H, Wen Z, et al. A survey on social media anomaly detection. ACM SIGKDD Explorations Newsletter, 2016,18(1):1-14.
    [8] Zhang YQ, Lv SQ, Fan D. Anomaly detection in online social networks. Chinese Journal of Computers, 2015,10:2011-2027(in Chinese with English abstract).
    [9] Mao JL, JinCQ, Zhang ZG, Zhou AY. Anomaly detection for trajectory big data:Advancements and framework. Ruan Jian Xue Bao/Journal of Software, 2017,28(1):17-34(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5151.htm[doi:10.13328/j.cnki.jos.005151]
    [10] Mo Q, Yang K. Overview of Web spammer detection. Ruan Jian Xue Bao/Journal of Software, 2014,25(7):1505-1526(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4617.htm[doi:10.13328/j.cnki.jos.004617]
    [11] Akoglu L, McGlohon M, Faloutsos C. Oddball:Spotting anomalies in weighted graphs. In:Proc. of the Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Berlin, Heidelberg:Springer-Verlag, 2010.410-421.
    [12] Yu R, He X, Liu Y. Glad:Group anomaly detection in social media analysis. ACM Trans. on Knowledge Discovery from Data (TKDD), 2015,10(2):18.
    [13] Xu X, Yuruk N, Feng Z, et al. Scan:A structural clustering algorithm for networks. In:Proc. of the 13th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM, 2007.824-833.
    [14] Tong H, Lin CY. Non-negative residual matrix factorization with application to graph anomaly detection. In:Proc. of the 2011 SIAM Int'l Conf. on Data Mining. Society for Industrial and Applied Mathematics, 2011.143-153.
    [15] Gyöngyi Z, Garcia-Molina H, Pedersen J. Combating Web Spam with trustrank. In:Proc. of the 30th Int'l Conf. on Very Large Data Bases, Vol. 30. VLDB Endowment, 2004.576-587.
    [16] Wu B, Goel V, Davison BD. Topical trustrank:Using topicality to combat Web Spam. In:Proc. of the 15th Int'l Conf. on World Wide Web. ACM, 2006.63-72.
    [17] Shah N, Beutel A, Hooi B, et al. Edgecentric:Anomaly detection in edge-attributed networks. In:Proc. of the 16th IEEE Int'l Conf. on Data Mining Workshops (ICDMW). IEEE, 2016.327-334.
    [18] Chakrabarti D. Autopart:Parameter-free graph partitioning and outlier detection. In:Proc. of the European Conf. on Principles of Data Mining and Knowledge Discovery. Berlin, Heidelberg:Springer-Verlag, 2004.112-124.
    [19] Li HP, Hu ZY, Wu YH, Wu FC. Behavior modeling and abnormality detection based on semi-supervised learning method. Ruan Jian Xue Bao/Journal of Software, 2007,18(3):527-537(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/527.htm[doi:10.1360/jos180527]
    [20] Chouiekh A, Haj ELHIEL. ConvNets for fraud detection analysis. Procedia Computer Science, 2018,127:133-138.
    [21] Alsheikh MA, Niyato D, Lin S, et al. Mobile big data analytics using deep learning and apache spark. IEEE Network, 2016,30(3):22-29.
    [22] Cai RC, Xie WH, Hao ZF, Wang LJ, Wen W. Abnormal crowd detection based on multi-scale recurrent neural network. Ruan Jian Xue Bao/Journal of Software, 2015,26(11):2884-2896(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4893.htm[doi:10.13328/j.cnki.jos.004893]
    [23] Zhang Y, Chen W, Yeo CK, et al. Detecting rumors on online social networks using multi-layer autoencoder. In:Proc. of the 2017 IEEE Technology & Engineering Management Conf. (TEMSCON). IEEE, 2017.437-441.
    [24] Guan SP, JinXL, Jia YT, Wang YZ, Cheng XQ. Knowledge reasoning over knowledge graph:A survey. Ruan Jian Xue Bao/Journal of Software, 2018,29(10):2966-2994(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5551.htm[doi:10.13328/j.cnki.jos.005551]
    [25] Castellini J, Poggioni V, Sorbi G. Fake Twitter followers detection by denoising autoencoder. In:Proc. of the Int'l Conf. on Web Intelligence. ACM, 2017.195-202.
    [26] Zenati H, Foo CS, Lecouat B, et al. Efficient GAN-based anomaly detection. arXiv Preprint arXiv:1802.06222, 2018.
    [27] Zou BY, Li CP, Tan LW, Chen H, Wang SQ. Social recommendations based on user trust and tensor factorization. Ruan Jian Xue Bao/Journal of Software, 2014,25(12):2852-2864(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4725.htm[doi:10.13328/j.cnki.jos.004725]
    [28] Von Luxburg U. A tutorial on spectral clustering. Statistics and Computing, 2007,17(4):395-416.
    [29] Prakash BA, Sridharan A, Seshadri M, et al. Eigenspokes:Surprising patterns and scalable community chipping in large graphs. In:Proc. of the Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Berlin, Heidelberg:Springer-Verlag, 2010.435-448.
    [30] Charikar M. Greedy approximation algorithms for finding dense components in a graph. In:Proc. of the Int'l Workshop on Approximation Algorithms for Combinatorial Optimization. Berlin, Heidelberg:Springer-Verlag, 2000.84-95.
    [31] Liu S, Hooi B, Faloutsos C. Holoscope:Topology-and-spike aware fraud detection. In:Proc. of the 2017 ACM on Conf. on Information and Knowledge Management. ACM, 2017.1539-1548.
    [32] Jiang M, Cui P, Beutel A, et al. Inferring strange behavior from connectivity pattern in social networks. In:Proc. of the Pacific- Asia Conf. on Knowledge Discovery and Data Mining. Cham:Springer-Verlag, 2014.126-138.
    [33] Shah N, Beutel A, Gallagher B, et al. Spotting suspicious link behavior with fbox:An adversarial perspective. In:Proc. of the 2014 IEEE Int'l Conf. on Data Mining (ICDM). IEEE, 2014.959-964.
    [34] Jiang M, Beutel A, Cui P, et al. A general suspiciousness metric for dense blocks in multimodal data. In:Proc. of the 2015 IEEE Int'l Conf. on Data Mining (ICDM). IEEE, 2015.781-786.
    [35] Shin K, Hooi B, Faloutsos C. M-Zoom:Fast dense-block detection in tensors with quality guarantees. In:Proc. of the Joint European Conf. on Machine Learning and Knowledge Discovery in Databases. Cham:Springer-Verlag, 2016.264-280.
    [36] Xiong L, Póczos B, Schneider J, et al. Hierarchical probabilistic models for group anomaly detection. In:Proc. of the 14th Int'l Conf. on Artificial Intelligence and Statistics. 2011.789-797.
    [37] Pincombe B. Anomaly detection in time series of graphs using arma processes. Asor Bulletin, 2005,24(4):2.
    [38] Chen L, Zhu PS, Qian TY, Zhu H, Zhou J. Edge sampling based network embedding model. Ruan Jian Xue Bao/Journal of Software, 2018,29(3):756-771(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5435.htm[doi:10.13328/j. cnki.jos.005435]
    [39] Malhotra P, Vig L, Shroff G, et al. Long Short Term Memory Networks for Anomaly Detection in Time Series. Presses Universitaires de Louvain, 2015.89.
    [40] Gupta M, Gao J, Sun Y, et al. Community trend outlier detection using soft temporal pattern mining. In:Proc. of the Joint European Conf. on Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg:Springer-Verlag, 2012.692-708.
    [41] Fu W, Song L, Xing EP. Dynamic mixed membership blockmodel for evolving networks. In:Proc. of the 26th Annual Int'l Conf. on Machine Learning. ACM, 2009.329-336.
    [42] Rossi RA, Gallagher B, Neville J, et al. Modeling dynamic behavior in large evolving graphs. In:Proc. of the 6th ACM Int'l Conf. on Web Search and Data Mining. ACM, 2013.667-676.
    [43] Yu W, Aggarwal CC, Ma S, et al. On anomalous hotspot discovery in graph streams. In:Proc. of the 13th IEEE Int'l Conf. on Data Mining (ICDM). IEEE, 2013.1271-1276.
    [44] Heard NA, Weston DJ, Platanioti K, et al. Bayesian anomaly detection methods for social networks. The Annals of Applied Statistics, 2010,4(2):645-662.
    [45] Li X, Li Z, Han J, et al. Temporal outlier detection in vehicle traffic data. In:Proc. of the IEEE Int'l Conf. on Data Engineering. IEEE, 2009.1319-1322.
    [46] Abello J, Eliassi-Rad T, Devanur N. Detecting novel discrepancies in communication networks. In:Proc. of the 10th IEEE Int'l Conf. on Data Mining (ICDM). IEEE, 2010.8-17.
    [47] Greene D, Doyle D, Cunningham P. Tracking the evolution of communities in dynamic social networks. In:Proc. of the 2010 Int'l Conf. on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 2010.176-183.
    [48] Chen Z, Hendrix W, Samatova NF. Community-based anomaly detection in evolutionary networks. Journal of Intelligent Information Systems, 2012,39(1):59-85.
    [49] Araujo M, Papadimitriou S, Günnemann S, et al. Com2:Fast automatic discovery of temporal ('comet') communities. In:Proc. of the Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Cham:Springer-Verlag, 2014.271-283.
    [50] Koutra D, Papalexakis EE, Faloutsos C. Tensorsplat:Spotting latent anomalies in time. In:Proc. of the 16th Panhellenic Conf. on Informatics (PCI). IEEE, 2012.144-149.
    [51] Papalexakis EE, Faloutsos C, Sidiropoulos ND. Parcube:Sparse parallelizable tensor decompositions. In:Proc. of the Joint European Conf. on Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg:Springer-Verlag, 2012.521-536.
    [52] Sun J, Xie Y, Zhang H, et al. Less is more:Compact matrix decomposition for large sparse graphs. In:Proc. of the 2007 SIAM Int'l Conf. on Data Mining. Society for Industrial and Applied Mathematics, 2007.366-377.
    [53] Jiang R, Fei H, Huan J. Anomaly localization for network data streams with graph joint sparse PCA. In:Proc. of the 17th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM, 2011.886-894.
    [54] Zhu YW, Yang JH, Zhang JX. Anomaly detection based on traffic information structure. Ruan Jian Xue Bao/Journal of Software, 2010,21(10):2573-2583(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3698.htm[doi:10.3724/SP.J.1001.2010.03698]
    [55] Fu PG, Hu XH. Anomaly detection algorithm based on the local distance of density-based sampling data. Ruan Jian Xue Bao/Journal of Software, 2017,28(10):2625-2639(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5134.htm[doi:10.13328/j.cnki.jos.005134]
    [56] Berlingerio M, Koutra D, Eliassi-Rad T, et al. Netsimile:A scalable approach to size-independent network similarity. arXiv Preprint arXiv:1209.2684, 2012.
    [57] Soundarajan S, Eliassi-Rad T, Gallagher B. Which network similarity measure should you choose:An empirical study. In:Proc. of the Workshop on Information in Networks. New York, 2013.
    [58] Guo T, Xu Z, Yao X, et al. Robust online time series prediction with recurrent neural networks. In:Proc. of the 2016 IEEE Int'l Conf. on Data Science and Advanced Analytics (DSAA). IEEE, 2016.816-825.
    [59] Bontemps L, McDermott J, Le-Khac NA. Collective anomaly detection based on long short-term memory recurrent neural networks. In:Proc. of the Int'l Conf. on Future Data and Security Engineering. Cham:Springer-Verlag, 2016.141-152.
    [60] Malhotra P, Ramakrishnan A, Anand G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv Preprint arXiv:1607.00148, 2016.
    [61] Li D, Chen D, Goh J, et al. Anomaly detection with generative adversarial networks for multivariate time series. arXiv Preprint arXiv:1809.04758, 2018.
    [62] Akoglu L, Tong H, Vreeken J, et al. Fast and reliable anomaly detection in categorical data. In:Proc. of the 21st ACM Int'l Conf. on Information and Knowledge Management. ACM, 2012.415-424.
    [63] Yu H, Kaminsky M, Gibbons PB, et al. Sybilguard:Defending against Sybil attacks via social networks. ACM SIGCOMM Computer Communication Review, 2006,36(4):267-278.
    [64] Liu C, Yan X, Yu H, et al. Mining behavior graphs for "backtrace" of noncrashing bugs. In:Proc. of the 2005 SIAM Int'l Conf. on Data Mining. Society for Industrial and Applied Mathematics, 2005.286-297.
    [65] Aggarwal CC. Outlier detection in graphs and networks. In:Proc. of the Outlier Analysis. Cham:Springer-Verlag, 2017.369-397.
    [66] Henderson K, Gallagher B, Eliassi-Rad T, et al. Rolx:Structural role extraction & mining in large graphs. In:Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM, 2012.1231-1239.
    [67] Hooi B, Song HA, Beutel A, et al. Fraudar:Bounding graph fraud in the face of camouflage. In:Proc. of the 22nd ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM, 2016.895-904.
    [68] Akoglu L, Chandy R, Faloutsos C. Opinion fraud detection in online reviews by network effects. ICWSM, 2013,13:2-11.
    [69] Pandit S, Chau DH, Wang S, et al. Netprobe:A fast and scalable system for fraud detection in online auction networks. In:Proc. of the 16th Int'l Conf. on World Wide Web. ACM, 2007.201-210.
    [70] Yu H, Gibbons PB, Kaminsky M, et al. Sybillimit:A near-optimal social network defense against Sybil attacks. In:Proc. of the 2008 IEEE Symp. on Security and Privacy (SP 2008). IEEE, 2008.3-17.
    [71] Sun J, Faloutsos C, Faloutsos C, et al. Graphscope:Parameter-free mining of large time-evolving graphs. In:Proc. of the 13th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM, 2007.687-696.
    [72] Noble CC, Cook DJ. Graph-based anomaly detection. In:Proc. of the 9th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM, 2003.631-636.
    [73] De Melo POSV, Akoglu L, Faloutsos C, et al. Surprising patterns for the call duration distribution of mobile phone users. In:Proc. of the Joint European Conf. on Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg:Springer- Verlag, 2010.354-369.
    [74] Fischer G. Communities of interest:Learning through the interaction of multiple knowledge systems. In:Proc. of the 24th IRIS Conf. 2001.1-13.
    [75] Hooi B, Shah N, Beutel A, et al. Birdnest:Bayesian inference for ratings-fraud detection. In:Proc. of the 2016 SIAM Int'l Conf. on Data Mining. Society for Industrial and Applied Mathematics, 2016.495-503.
    [76] Sun H, Huang J, Han J, et al. Gskeletonclu:Density-based network clustering via structure-connected tree division or agglomeration. In:Proc. of the 10th IEEE Int'l Conf. on Data Mining (ICDM). IEEE, 2010.481-490.
    [77] Rattigan MJ, Jensen D. The case for anomalous link discovery. ACM SIGKDD Explorations Newsletter, 2005,7(2):41-47.
    [78] Aggarwal CC, Zhao Y, Philip SY. Outlier detection in graph streams. 2011.[doi:10.1109/ICDE.2011.5767885]
    [79] Shiokawa H, Fujiwara Y, Onizuka M. SCAN++:Efficient algorithm for finding clusters, hubs and outliers on large-scale graphs. Proc. of the VLDB Endowment, 2015,8(11):1178-1189.
    [80] Gupta M, Gao J, Sun Y, et al. Integrating community matching and outlier detection for mining evolutionary community outliers. In:Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM, 2012.859-867.
    [81] Cao Q, Sirivianos M, Yang X, et al. Aiding the detection of fake accounts in large scale social online services. In:Proc. of the 9th USENIX Conf. on Networked Systems Design and Implementation. USENIX Association, 2012.15.
    [82] Jiang M, Cui P, Beutel A, et al. Catching synchronized behaviors in large networks:A graph mining approach. ACM Trans. on Knowledge Discovery from Data (TKDD), 2016,10(4):35.
    [83] Akhter MI, Ahamad MG. Detecting telecommunication fraud using neural networks through data mining. Int'l Journal of Scientific and Engineering Research, 2012,3(3):601-606.
    [84] Boden B, Günnemann S, Hoffmann H, et al. RMiCS:A robust approach for mining coherent subgraphs in edge-labeled multi-layer graphs. In:Proc. of the 25th Int'l Conf. on Scientific and Statistical Database Management. ACM, 2013.23.
    [85] Yang B, Cao J, Ni R, et al. Anomaly detection in moving crowds through spatiotemporal autoencoding and additional attention. In:Proc. of the Advances in Multimedia. 2018.
    [86] Kagan D, Elovichi Y, Fire M. Generic anomalous vertices detection utilizing a link prediction algorithm. Social Network Analysis and Mining, 2018,8(1):27.
    附中文参考文献:
    [2] 郭嘉琰,李荣华,张岩,王国仁.基于图神经网络的动态网络异常检测算法.软件学报,2020,31(3):748-762. http://www.jos.org.cn/1000-9825/5903.htm[doi:10.13328/j.cnki.jos.005903]
    [8] 张玉清,吕少卿,范丹.在线社交网络中异常帐号检测方法研究.计算机学报,2015,10:2011-2027.
    [9] 毛嘉莉,金澈清,章志刚,周傲英.轨迹大数据异常检测:研究进展及系统框架.软件学报,2017,28(1):17-34. http://www.jos.org.cn/1000-9825/5151.htm[doi:10.13328/j.cnki.jos.005151]
    [10] 莫倩,杨珂.网络水军识别研究.软件学报,2014,25(7):1505-1526. http://www.jos.org.cn/1000-9825/4617.htm[doi:10.13328/j.cnki. jos.004617]
    [19] 李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测.软件学报,2007,18(3):527-537. http://www.jos.org.cn/1000-9825/18/527.htm[doi:10.1360/jos180527]
    [22] 蔡瑞初,谢伟浩,郝志峰,王丽娟,温雯.基于多尺度时间递归神经网络的人群异常检测.软件学报,2015,26(11):2884-2896. http://www.jos.org.cn/1000-9825/4893.htm[doi:10.13328/j.cnki.jos.004893]
    [24] 官赛萍,靳小龙,贾岩涛,王元卓,程学旗.面向知识图谱的知识推理研究进展.软件学报,2018,29(10):2966-2994. http://www.jos.org.cn/1000-9825/5551.htm[doi:10.13328/j.cnki.jos.005551]
    [27] 邹本友,李翠平,谭力文,陈红,王绍卿.基于用户信任和张量分解的社会网络推荐.软件学报,2014,25(12):2852-2864. http://www.jos.org.cn/1000-9825/4725.htm[doi:10.13328/j.cnki.jos.004725]
    [38] 陈丽,朱裴松,钱铁云,朱辉,周静.基于边采样的网络表示学习模型.软件学报,2018,29(3):756-771. http://www.jos.org.cn/1000-9825/5435.htm[doi:10.13328/j.cnki.jos.005435]
    [56] 朱应武,杨家海,张金祥.基于流量信息结构的异常检测.软件学报,2010,21(10):2573-2583. http://www.jos.org.cn/1000-9825/3698.htm[doi:10.3724/SP.J.1001.2010.03698]
    [57] 付培国,胡晓惠.基于密度偏倚抽样的局部距离异常检测方法.软件学报,2017,28(10):2625-2639. http://www.jos.org.cn/1000-9825/5134.htm[doi:10.13328/j.cnki.jos.005134]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李忠,靳小龙,庄传志,孙智.面向图的异常检测研究综述.软件学报,2021,32(1):167-193

复制
分享
文章指标
  • 点击次数:6622
  • 下载次数: 13135
  • HTML阅读次数: 5796
  • 引用次数: 0
历史
  • 收稿日期:2019-07-01
  • 最后修改日期:2020-04-11
  • 在线发布日期: 2020-07-27
  • 出版日期: 2021-01-06
文章二维码
您是第19947898位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号