主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第9期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
李韵,黄辰林,王中锋,袁露,王晓川.基于机器学习的软件漏洞挖掘方法综述.软件学报,2020,31(7):2040-2061
基于机器学习的软件漏洞挖掘方法综述
Survey of Software Vulnerability Mining Methods Based on Machine Learning
投稿时间:2019-11-08  修订日期:2020-02-07
DOI:10.13328/j.cnki.jos.006055
中文关键词:  机器学习  漏洞挖掘  代码表征  软件质量  深度学习
英文关键词:machine learning  vulnerability mining  code representation  software quality  deep learning
基金项目:国家重点研发计划(2018YFB0803501)
作者单位E-mail
李韵 国防科技大学 计算机学院, 湖南 长沙 410073  
黄辰林 国防科技大学 计算机学院, 湖南 长沙 410073 clhuang@nudt.edu.cn 
王中锋 中国人民解放军61302部队, 北京 100016  
袁露 国防科技大学 计算机学院, 湖南 长沙 410073  
王晓川 国防科技大学 计算机学院, 湖南 长沙 410073  
摘要点击次数: 1025
全文下载次数: 2153
中文摘要:
      软件复杂性的增加,给软件安全性带来极大的挑战.随着软件规模的不断增大以及漏洞形态多样化,传统漏洞挖掘方法由于存在高误报率和高漏报率的问题,已无法满足复杂软件的安全性分析需求.近年来,随着人工智能产业的兴起,大量机器学习方法被尝试用于解决软件漏洞挖掘问题.首先,通过梳理基于机器学习的软件漏洞挖掘的现有研究工作,归纳了其技术特征与工作流程;接着,从其中核心的原始数据特征提取切入,以代码表征形式作为分类依据,对现有研究工作进行分类阐述,并系统地进行了对比分析;最后,依据对现有研究工作的整理总结,探讨了基于机器学习的软件漏洞挖掘领域面临的挑战,并展望了该领域的发展趋势.
英文摘要:
      The increasing complexity of software application brings great challenges to software security. Due to the increase of software scale and diversity of vulnerability forms, the high false positives and false negatives of traditional vulnerability mining methods cannot meet the requirements of software security analysis. In recent years, with the rise of artificial intelligence industry, a large number of machine learning methods have been tried to solve the problem of software vulnerability mining. Firstly, the latest research results of applying machine learning method to the research of vulnerability mining are summarized in recent years, and the technical characteristics and workflow are proposed. Then, starting from the core original data features extraction, the existing research is classified according to the code representation form, and the existing research is systematically compared. Finally, based on the summary of the existing research, the challenges in the field of software vulnerability mining based on machine learning are discussed, and the development trends of this field are proposed.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利