主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
邱涛,王斌,舒昭维,赵智博,宋子文,钟延辉.面向关系数据库的智能索引调优方法.软件学报,2020,31(3):634-647
面向关系数据库的智能索引调优方法
Intelligent Index Tuning Approach for Relational Databases
投稿时间:2019-07-20  修订日期:2019-09-10
DOI:10.13328/j.cnki.jos.005906
中文关键词:  索引调优  机器学习  数据库索引  优化模型  关系数据库
英文关键词:index tuning  machine learning  database index  optimization model  relational database
基金项目:国家重点研发计划(2018YFB1700404);国家自然科学基金(U1736104,61572122,61532021);中央高校基本科研专项资金(N171602003);CCF-华为数据库创新研究计划(CCF-Huawei DBIR2019009B)
作者单位E-mail
邱涛 东北大学 计算机科学与工程学院, 辽宁 沈阳 110169  
王斌 东北大学 计算机科学与工程学院, 辽宁 沈阳 110169 binwang@mail.neu.edu.cn 
舒昭维 东北大学 计算机科学与工程学院, 辽宁 沈阳 110169  
赵智博 东北大学 计算机科学与工程学院, 辽宁 沈阳 110169  
宋子文 东北大学 计算机科学与工程学院, 辽宁 沈阳 110169  
钟延辉 华为技术有限公司 成都研究所, 四川 成都 610000  
摘要点击次数: 979
全文下载次数: 777
中文摘要:
      数据库索引是关系数据库系统实现快速查询的有效方式之一.智能索引调优技术可以有效地对数据库实例进行索引调节,从而保持数据库高效的查询性能.现有的方法大多利用了数据库实例的查询日志,它们先从查询日志中得到候选索引,再利用人工设计的模型选择索引,从而调节索引.然而,从查询日志中产生出的候选索引可能并未实际存在于数据库实例中,因此导致这些方法不能有效地估计这类索引对于查询的优化效果.首先,设计并实现了一种面向关系数据库的智能索引调优系统;其次,提出了一种利用机器学习方法来构造索引的量化模型,根据该模型,可以准确地对索引的查询优化效果进行估计;接着设计了一种高效的最优索引选择算法,实现快速地从候选索引空间中选择满足给定大小约束的最优的索引组合;最后,通过实验测试不同场景下智能索引调优系统的调优性能.实验结果表明,所提出的技术可以在不同的场景下有效地对索引进行优化,从而实现数据库系统查询性能的提升.
英文摘要:
      Indexing is one of the most effective techniques for relational databases to achieve fast queryprocessing. The intelligent index tuning technique can effectively adjust the index of the database instance to obtain efficient query performance. Most of the existing methods utilize the query log to generate candidate indices, and then use the artificially designed models to select indices, thereby the indices are adjusted. However, the candidate indices generated from the query log may not exist in the database instance, so they cannot precisely estimate the effects of such indices on the query processing. This study first designs and implements an intelligent index tuning system for the relational database. Secondly, it proposes a learning-based method to model the effects of indices for query processing, accordingly, the query optimization effect of an index can be accurately estimated when selecting optimized indices. Then, an efficient optimal index selection algorithm is designed to select a set of indices with the maximal utility from candidate indices, which satisfy the space threshold. Finally, experiments are conducted to test the performance of the proposed system in different settings. The experimental results show that the proposed technique can effectively adjust the index and achieve a significant improvement in query performance for a relational database.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利