主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第5期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
郭嘉琰,李荣华,张岩,王国仁.基于图神经网络的动态网络异常检测算法.软件学报,2020,31(3):748-762
基于图神经网络的动态网络异常检测算法
Graph Neural Network Based Anomaly Detection in Dynamic Networks
投稿时间:2019-07-19  修订日期:2019-11-25
DOI:10.13328/j.cnki.jos.005903
中文关键词:  动态网络异常检测  图神经网络  图深度学习
英文关键词:anomaly detection in dynamic network  graph neural network  deep learning on graphs
基金项目:国家自然科学基金(61772346,U1809206,61532001,61332006,61332014,61328202,U1401256);教育部-中国移动科研基金(MCM20170503)
作者单位E-mail
郭嘉琰 北京大学 信息科学技术学院, 北京 100871  
李荣华 北京理工大学 计算机学院, 北京 100081 lironghuabit@126.com 
张岩 北京大学 信息科学技术学院, 北京 100871  
王国仁 北京理工大学 计算机学院, 北京 100081  
摘要点击次数: 799
全文下载次数: 1215
中文摘要:
      动态变化的图数据在现实应用中广泛存在,有效地对动态网络异常数据进行挖掘,具有重要的科学价值和实践意义.大多数传统的动态网络异常检测算法主要关注于网络结构的异常,而忽视了节点和边的属性以及网络变化的作用.提出一种基于图神经网络的异常检测算法,将图结构、属性以及动态变化的信息引入模型中,来学习进行异常检测的表示向量.具体地,改进图上无监督的图神经网络框架DGI,提出一种面向动态网络无监督表示学习算法Dynamic-DGI.该方法能够同时提取网络本身的异常特性以及网络变化的异常特性,用于表示向量的学习.实验结果表明,使用该算法学得的网络表示向量进行异常检测,得到的结果优于最新的子图异常检测算法SpotLight,并且显著优于传统的网络表示学习算法.除了能够提升异常检测的准确度,该算法也能够挖掘网络中存在的有实际意义的异常.
英文摘要:
      Dynamic graph structured data is ubiquitous in real-life applications. Mining outliers on dynamic networks is an important problem, which is very useful for many practical applications. Most traditional network outlier detection algorithms focus mainly on the strutraulal anomaly, ignoring the nodes and edges' attributes, and the time-varying features as well. This study proposes a graph neural network based network anomaly detection algorithm which can capture the nodes and edges' attributes and time-varying features and fully uses these features to learn a representation vector for each node. Specifically, the proposed algorithm improves an unsupervised graph neural network framework called DGI. Based on DGI, a new danamic DGI algorithm is proposed, which is called Dynamic-DGI, for dynamic networks. Dynamic-DGI can simultaneously extracts the abnormal characteristics of the network itself and the abnormal characteristics of the network changes. The experimental results show that the proposed algorithm is better than the state-of-the-art anomaly detection algorithm SpotLight, and is significantly better than the traditional network representation learning algorithms. In addition to improving the accuracy, the proposed algorithmis also able to mine interesting anomalies in the network.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利