主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2022年专刊出版计划 微信服务介绍 最新一期:2021年第3期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
吴璠,王中卿,周夏冰,周国栋.基于用户和产品表示的情感分析和评论质量检测联合模型.软件学报,2020,31(8):2492-2507
基于用户和产品表示的情感分析和评论质量检测联合模型
Joint Model for Sentiment Analysis and Review Quality Detection with User and Product Representations
投稿时间:2019-01-25  修订日期:2019-05-06
DOI:10.13328/j.cnki.jos.005895
中文关键词:  情感分析  评论质量  用户表示  产品表示  联合模型  注意力机制
英文关键词:sentiment analysis  review quality  user representation  product representation  joint model  attention mechanism
基金项目:国家自然科学基金(61806137,61702518,61836007,61702149);江苏省高等学校自然科学研究基金(61702149)
作者单位E-mail
吴璠 苏州大学 计算机科学与技术学院, 江苏 苏州 215006  
王中卿 苏州大学 计算机科学与技术学院, 江苏 苏州 215006 wangzq@suda.edu.cn 
周夏冰 苏州大学 计算机科学与技术学院, 江苏 苏州 215006  
周国栋 苏州大学 计算机科学与技术学院, 江苏 苏州 215006  
摘要点击次数: 411
全文下载次数: 415
中文摘要:
      情感分析旨在判断文本的情感倾向,而评论质量检测旨在判断评论的质量.情感分析和评论质量检测是情感分析中两个关键的任务,这两个任务受多种因素的影响而密切相关,同一个产品的情感倾向具有相似的情感极性;同时,同一个用户发表的评论质量也具有一定的相似性.因此,为了更好地研究情感分类和评论质量检测任务的相关性以及用户信息和产品信息分别对情感分类和评论质量检测的影响,提出了一个情感分析和评论质量检测联合模型.首先,使用深度学习方法学习评论的文本信息作为联系两个任务的基础;然后,将用户评论及产品评论作为用户的表示和产品的表示;在此基础上,采用用户注意力机制对用户的表示进行编码,采用产品注意力机制对产品的表示进行编码;最后,将用户表示和产品表示结合起来进行情感分析和评论质量检测.通过在Yelp2013和Yelp2015数据集上的实验结果表明,该模型与现有的神经网络模型相比,能够有效地提高情感分析和在线评论质量检测的性能.
英文摘要:
      Sentiment analysis aims to judge the emotional tendency of the text, while the review quality prediction aims at judging the quality of the review. Sentiment analysis and review quality detection are two key tasks in sentiment analysis, these two tasks are closely related by many factors, the reviews on the same product have similar opinion polarity, and the quality of reviews from the same user tend to be similar. Therefore, this study proposes a joint neural model to learn sentiment analysis and quality prediction in order to better study the correlation between sentiment classification and review quality prediction tasks and the impact of user information and product information on sentiment classification and review quality prediction respectively. First of all, this study employs a deep representation learning approach to learn textual information of reviews, serving as the basis to connect two tasks, and then uses the user reviews and product reviews as the representation of the user and the representation of the product, on the basis, a user attention is adopted to encode user information in user representation, and a product attention is used to encode product information in product representation, and finally both user and product representations are jointly integrated for sentiment analysis and quality prediction with attention mechanism. The experimental results on the Yelp2013 and Yelp2015 datasets show that the proposed model can effectively improve the performance of sentiment analysis and online review quality prediction compared with the existing neural network models.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利