主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
齐志鑫,王宏志,周雄,李建中,高宏.劣质数据上代价敏感决策树的建立.软件学报,2019,30(3):604-619
劣质数据上代价敏感决策树的建立
Cost-sensitive Decision Tree Induction on Dirty Data
投稿时间:2018-07-19  修订日期:2018-09-20
DOI:10.13328/j.cnki.jos.005691
中文关键词:  代价敏感决策树  劣质数据  数据清洗  误分类代价  测试代价
英文关键词:cost-sensitive decision tree  dirty data  data cleaning  misclassification cost  test cost
基金项目:国家自然科学基金(U1509216,61472099);国家科技支撑计划(2015BAH10F01)
作者单位E-mail
齐志鑫 哈尔滨工业大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001  
王宏志 哈尔滨工业大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001 wangzh@hit.edu.cn 
周雄 哈尔滨工业大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001  
李建中 哈尔滨工业大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001  
高宏 哈尔滨工业大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001  
摘要点击次数: 702
全文下载次数: 353
中文摘要:
      代价敏感决策树是以最小化误分类代价和测试代价为目标的一种决策树.目前,随着数据量急剧增长,劣质数据的出现也愈发频繁.在建立代价敏感决策树时,训练数据集中的劣质数据会对分裂属性的选择和决策树结点的划分造成一定的影响.因此在进行分类任务前,需要提前对数据进行劣质数据清洗.然而在实际应用中,由于数据清洗工作所需要的时间和金钱代价往往很高,许多用户给出了自己可接受的数据清洗代价最大值,并要求将数据清洗的代价控制在这一阈值内.因此除了误分类代价和测试代价以外,劣质数据的清洗代价也是代价敏感决策树建立过程中的一个重要因素.然而,现有代价敏感决策树建立的相关研究没有考虑数据质量问题.为了弥补这一空缺,着眼于研究劣质数据上代价敏感决策树的建立问题.针对该问题,提出了3种融合数据清洗算法的代价敏感决策树建立方法,并通过实验证明了所提出方法的有效性.
英文摘要:
      Cost-sensitive decision tree is a kind of decision tree which maximizes the sum of misclassification costs and test costs. Recently, with the explosive growth of data size, dirty data appears more frequently. In the process of cost-sensitive decision tree induction, dirty data in training datasets have negative impacts on selection of splitting attributes and division of decision tree nodes. Therefore, dirty data cleaning is necessary before classification tasks. Nevertheless, in practice, many users provide an acceptable threshold of data cleaning costs since time costs and expenses of data cleaning are expensive. Therefore, in addition to misclassification cost and test cost, data-cleaning cost is also an essential factor in cost-sensitive decision tree induction. However, existing researches have not considered data quality in the problem. To fill this gap, this study aims to focus on cost-sensitive decision tree induction on dirty data. Three decision tree induction methods integrated with data cleaning algorithms are presented. Experimental results demonstrate the effective of the proposed approaches.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利