主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
孟祥武,李瑞昌,张玉洁,纪威宇.基于用户轨迹数据的移动推荐系统研究.软件学报,2018,29(10):3111-3133
基于用户轨迹数据的移动推荐系统研究
Survey on Mobile Recommender Systems Based on User Trajectory Data
投稿时间:2017-05-15  修订日期:2018-03-27
DOI:10.13328/j.cnki.jos.005608
中文关键词:  广义轨迹  推荐系统  应用  综述
英文关键词:generalized trajectory  recommender system  application  survey
基金项目:北京市教育委员会共建项目专项
作者单位E-mail
孟祥武 智能通信软件与多媒体北京市重点实验室(北京邮电大学), 北京 100876
北京邮电大学 计算机学院, 北京 100876 
mengxw@bupt.edu.cn 
李瑞昌 智能通信软件与多媒体北京市重点实验室(北京邮电大学), 北京 100876
北京邮电大学 计算机学院, 北京 100876 
 
张玉洁 智能通信软件与多媒体北京市重点实验室(北京邮电大学), 北京 100876
北京邮电大学 计算机学院, 北京 100876 
 
纪威宇 智能通信软件与多媒体北京市重点实验室(北京邮电大学), 北京 100876
北京邮电大学 计算机学院, 北京 100876 
 
摘要点击次数: 1650
全文下载次数: 1581
中文摘要:
      近年来,随着移动智能设备的普及,移动社交网络方兴未艾,用户习惯和朋友分享自己的精彩经历,因此产生了大规模具有时空属性的用户轨迹数据.从狭义的角度来看,轨迹数据是指连续采样的GPS数据.从广义的角度来看,在时空域存在连续性的序列,都可以称作轨迹.例如:在社交网络上的用户签到序列就可以认为是粗粒度的轨迹数据.广义轨迹数据具有时空异构性、连续与离散并存、时空项目的层次性不明显和分类不明确等特点,但是相比于GPS轨迹数据,广义轨迹数据来源广泛,蕴含丰富的信息,这给传统的移动推荐系统带来了巨大的机遇.与此同时,广义轨迹数据规模大、结构丰富,这也给传统的移动推荐系统带来了巨大的挑战.如何利用广义用户轨迹数据来提升移动推荐系统的性能,已成为学术界和产业界共同关注的重要课题.以轨迹数据特征作为切入点,对近年来基于广义用户轨迹数据的移动推荐系统的主要模型方法和推荐评价指标进行了系统综述,阐述了与传统移动推荐系统的联系和区别.最后,对基于广义用户轨迹数据的移动推荐系统有待深入研究的难点和发展趋势进行了分析和展望.
英文摘要:
      In recent years, with the popularity of mobile smart devices, location based social networks are on the rise. Users trend to share their wonderful experiences with their friends, resulting in producing large-scale user trajectory with temporal and spatial attributes. From a narrow perspective, the trajectory data refers to continuously sampled GPS data only. From a broad perspective, it can be called trajectory data as long as the data has sequential characteristic. Thus, the check-ins, acquired from a social network, can also be considered coarse-grained trajectory data. The generalized trajectory data has the characteristics of spatiotemporal heterogeneity, continuous and discrete coexistence, and containing temporal-spatial items with unclear hierarchy and classification. However, compared to the GPS trajectory data, the generalized trajectory data source is extensive and contains rich information, which brings great opportunity to the traditional mobile recommender system. At the same time, the generalized trajectory data has big scale and diversity structure, which also presents great challenges to the system. It has become an important issue how to use the generalized trajectory data to improve the performance of mobile recommender system in academia and industry. This paper takes the trajectory data characteristics as the focal point to analyze and survey main recommender methods and evaluation metrics based on generalized user trajectory data. Further, it expounds the relationships and differences between traditional mobile recommender systems and the mobile recommender systems based on user trajectory data. Finally, the paper discusses the difficulty and development trend of mobile recommender systems based on generalized user trajectory.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利