主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
张卫丰,刘蕊成,许蕾.基于动态行为分析的网页木马检测方法.软件学报,2018,29(5):1410-1421
基于动态行为分析的网页木马检测方法
Web Page Trojan Detection Method Based on Dynamic Behavior Analysis
投稿时间:2017-06-30  修订日期:2017-08-29
DOI:10.13328/j.cnki.jos.005495
中文关键词:  网页木马  堆恶意操作  代码混淆  动态分析  机器学习
英文关键词:drive-by-download  heap malicious operation  code obfuscation  dynamic analysis  machine learning
基金项目:国家重点基础研究发展计划(973)(2014CB340702);国家自然科学基金(61272080,91418202,61403187)
作者单位E-mail
张卫丰 南京邮电大学 计算机学院, 江苏 南京 210003 zhangwf@njupt.edu.cn 
刘蕊成 南京邮电大学 计算机学院, 江苏 南京 210003  
许蕾 南京大学 计算机科学与技术系, 江苏 南京 210023  
摘要点击次数: 736
全文下载次数: 935
中文摘要:
      网页木马是一种在网页中插入攻击脚本,利用浏览器及其插件中的漏洞,使受害者的系统静默地下载并安装恶意程序的攻击形式.结合动态程序分析和机器学习方法,提出了基于动态行为分析的网页木马检测方法.首先,针对网页木马攻击中的着陆页上的攻击脚本获取行为,监控动态执行函数执行,包括动态生成函数执行、脚本插入、页面插入和URL跳转,并根据一套规则提取这些行为,此外,提取与其相关的字符串操作记录作为特征;其次,针对利用堆恶意操作注入shellcode的行为,提出堆危险指标作为特征;最后,从Alexa和VirusShare收集了500个网页样本作为数据集,用机器学习方法训练分类模型.实验结果表明,与现有方法相比,该方法具有准确率高(96.94%)、可有效地对抗代码混淆的干扰(较低的误报率6.1%和漏报率1.3%)等优点.
英文摘要:
      Web Trojan is a form of attack that inserts an attacking script into the Web page,and by exploiting the vulnerabilities of browsers and their plug-ins,it causes the victim's system silently download and install malicious programs.Based on dynamic program analysis and machine learning method,this paper proposes a method of detecting Trojans based on dynamic behavior analysis.Firstly,the behaviors of the attack scripts on the landing page,including the dynamic function execution,the dynamic generation function execution,the script insertion,the page insertion and the URL jump,are monitored.Then these behaviors are extracted according to a set of rules.The associated string operation records are also processed as features.Next,for the use of heap malicious operation (the shellcode behavior),a feature indicating the heap risk is proposed.Finally,500 web samples from Alexa and VirusShare are collected as data sets,and a classifier is trained by machine learning method.The experimental results show that compared with the existing methods,the presented method has high accuracy (96.94%) and can effectively prevent interference of code obfuscation (lower false positive rate of 6.1% and false negative rate of 1.3%).
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利