李鸿超,刘建勋,曹步清,石敏.融合多维信息的主题自适应Web API推荐方法.软件学报,2018,29(11):3374-3387 |
融合多维信息的主题自适应Web API推荐方法 |
Topic-Adaptive Web API Recommendation Method via Integrating Multidimensional Information |
投稿时间:2017-07-20 修订日期:2017-09-16 |
DOI:10.13328/j.cnki.jos.005482 |
中文关键词: Web API推荐 HDP (hierarchical Dirichlet process) 因子分解 Mashup创建 |
英文关键词:Web API recommendation HDP (hierarchical Dirichlet process) factorization machine Mashup creation |
基金项目:国家自然科学基金(61872139,61873316,61572187);国家科技支撑计划(2015BAF32B01);湖南省自然科学基金(2017JJ2098) |
|
摘要点击次数: 4454 |
全文下载次数: 2373 |
中文摘要: |
如何根据用户的自然语言需求描述自动生成或推荐用于解决问题的Web API服务集合,并辅助构建Mashup,是业务流程管理者和服务组合者关注的热点之一.如何提高推荐的质量,是大家关注的焦点.为此,提出了一种融合多维信息的主题自适应Web API推荐方法HDP-FM(hierarchical Dirichlet processes-factorization machines)为Mashup的创建推荐Web APIs集合.该方法以Web API的描述文档为语料库,利用HDP模型训练每个Web API的主题分布向量;其次,利用已生成的主题模型预测每个Mashup的主题分布向量,用于相似度的计算;最后,将Mashup之间的相似度、WebAPI之间的相似度、Web API的流行度和共现性作为因子分解机模型的输入,评分排序获取用于推荐的Web APIs集合.为了验证HDP-FM方法的性能,使用从ProgrammableWeb平台上爬取的真实数据进行多组实验,实验结果表明,HDP-FM方法在准确率、召回率、F-measure和NDCG@N等方面具有较好的性能. |
英文摘要: |
How to automatically generate or recommend a set of Web APIs for Mashup creation according a user's natural language description of requirement is a focus of attention among business process managers and services composition designers. A topic adaptive Web API recommendation method, HDP-FM (hierarchical Dirichlet processes-factorization machine), is proposed in this paper to recommend a set of Web APIs for Mashup creation. This approach firstly makes the Web API description document as a corpus, and trains a topic distribution vector for a Web API by the HDP model. It then predicts a topic distribution vector for a Mashup via the generated model, where the topic distribution vector is used to calculate the similarity. Finally, a factorization model is utilized to score and sort Web APIs by taking the similarity between Mashups, the similarity between Web APIs, the popularity of Web APIs and the co-occurrence of Web APIs as inputs. A Mashup can be created based on these recommended Web APIs. To verify the performance of the HDP-FM method, a series of experiments are conducted on a real dataset crawled from the ProgrammableWeb platform. The results show that the HDP-FM method has a good performance over others in term of precision, recall, F-measure and NDCG@N. |
HTML 下载PDF全文 查看/发表评论 下载PDF阅读器 |