主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
钱珺,王朝坤,郭高扬.基于社区的动态网络节点介数中心度更新算法.软件学报,2018,29(3):853-868
基于社区的动态网络节点介数中心度更新算法
Community Based Node Betweenness Centrality Updating Algorithms in Dynamic Networks
投稿时间:2017-08-07  修订日期:2017-09-05
DOI:10.13328/j.cnki.jos.005457
中文关键词:  节点介数中心度  社区  动态网络  CBU  最短距离
英文关键词:node betweenness centrality  community  dynamic network  CBU  shortest distance
基金项目:国家自然科学基金(61373023);工业和信息化部智能制造综合标准化与新模式应用项目
作者单位E-mail
钱珺 清华大学 软件学院, 北京 100084  
王朝坤 清华大学 软件学院, 北京 100084 chaokun@tsinghua.edu.cn 
郭高扬 清华大学 软件学院, 北京 100084  
摘要点击次数: 1086
全文下载次数: 1353
中文摘要:
      随着互联网技术的迅猛发展,社会网络呈现出爆炸增长的趋势,传统的静态网络分析方法越来越难以达到令人满意的效果.于是,对网络进行动态分析就成为社会网数据管理领域的一个研究热点.节点介数中心度衡量的是一个节点对图中其他点对最短路径的控制能力,有利于挖掘社会网络中的重要节点.在图结构频繁变化的场合,若每次变化后都重新计算整个图中所有节点的介数中心度,效率将会降低.针对动态网络中节点介数中心度计算困难的问题,提出一种基于社区的节点介数中心度更新算法.通过维护社区与社区、社区与节点的最短距离集合,快速过滤掉那些在网络动态更新中不受影响的点对,从而提高节点介数中心度的更新效率.真实数据集和合成数据集上的实验结果表明了所提算法的有效性.
英文摘要:
      With the rapid development of Internet technology, social networks show a trend of explosive growth. As the traditional analysis on static networks becomes more and more difficult to achieve satisfactory results, dynamic network analysis has turned into a research hotspot in the field of social network data management. Node betweenness centrality measures the ability of a node to control the shortest paths between other nodes in the graph, which is useful for mining important nodes in social networks. However, the efficiency will be low if the betweenness centrality of all nodes needs to be calculated each time while the graph structure changes frequently. To address the difficult problem of computing node betweenness centrality in dynamic networks, a community based betweenness centrality updating algorithm is proposed in this paper. By maintaining the shortest distance sets between communities and communities, as well as between communities and nodes, the node pairs which are not affected during the dynamically updating process can be quickly filtered out, thus greatly improving the updating efficiency of node betweenness centrality. Experimental results conducted on real-world datasets and synthetic datasets show the effectiveness of the proposed algorithms.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利