主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
毋立芳,贺娇瑜,简萌,邹蕴真,赵铁松.局部聚类分析的FCN-CNN云图分割方法.软件学报,2018,29(4):1049-1059
局部聚类分析的FCN-CNN云图分割方法
Local Clustering Analysis Based FCN-CNN for Cloud Image Segmentation
投稿时间:2017-04-30  修订日期:2017-06-26
DOI:10.13328/j.cnki.jos.005409
中文关键词:  云图像  超像素  全卷积神经网络  卷积神经网络  图像分割
英文关键词:cloud image  superpixel  FCN (fully convolutional network)  CNN (convolutional neural network)  image segmentation
基金项目:北京市教委科技创新项目(KZ201610005012);中国博士后科学基金(2017M610026,2017M610027);国家自然科学基金(61671152)
作者单位E-mail
毋立芳 北京工业大学 信息与通信工程学院, 北京 100124  
贺娇瑜 北京工业大学 信息与通信工程学院, 北京 100124  
简萌 北京工业大学 信息与通信工程学院, 北京 100124 jianmeng648@163.com 
邹蕴真 北京工业大学 信息与通信工程学院, 北京 100124  
赵铁松 福州大学 物理与信息工程学院, 福建 福州 350116  
摘要点击次数: 986
全文下载次数: 1110
中文摘要:
      空气中的尘埃、污染物及气溶胶粒子的存在严重影响了大气预测的有效性,毫米波雷达云图的有效分割成为解决这一问题的关键.提出了一种基于超像素分析的全卷积神经网路FCN和深度卷积神经网络CNN(FCN-CNN)的云图分割方法.首先通过超像素分析对云图每个像素点的近邻域实现相应的聚类,同时将云图输入到不同步长的全卷积神经网络FCN 32s和FCN 8s中实现云图的预分割;FCN 32s预测结果中的"非云"区域一定是云图中的部分"非云"区域,FCN 8s预测结果中的"云"区域一定是云图中的部分"云"区域;余下的不确定的区域通过深度卷积神经网络CNN进行进一步分析.为提高效率,FCN-CNN选取了不确定区域中超像素的几个关键像素来代表超像素区域的特征,通过CNN网络来判断关键像素是"云"或者是"非云".实验结果表明,FCN-CNN的精度与MR-CNN、SP-CNN相当,但是速度相比于MR-CNN提高了880倍,相比于SP-CNN提高了1.657倍.
英文摘要:
      Dust, pollutant and the aerosol particles in the air bring significant challenge to the atmospheric prediction, and the segmentation of millimeter-wave radar cloud image has become a key to deal with the problem. This paper presents superpixel analysis based cloud image segmentation with fully convolutional networks (FCN) and convolutional neural networks (CNN), named FCN-CNN. Firstly, the superpixel analysis is performed to cluster the neighborhood of each pixel in the cloud image. Then the cloud image is given to the FCN with different steps, such as FCN 32s and FCN 8s. The "non-cloud" area in the FCN 32s result must be a part of the "non-cloud" area in the cloud image. Meanwhile, the "cloud" area in the FCN 8s result must be a part of the "cloud" area in the cloud image. The remaining uncertain region of the cloud image needs to be further estimated by CNN. For efficiency, it is necessary to select several key pixels in the superpixel to represent the characteristics of the superpixel region. The selected key pixels are classified by CNN as "cloud" or "non-cloud". The experimental results illustrate that while the accuracy of FCN-CNN is almost equivalent to MR-CNN and SP-CNN, the speed is 880 times higher than MR-CNN, and 1.657 times higher than SP-CNN.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利