主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
丁明宇,牛玉磊,卢志武,文继荣.基于深度学习的图片中商品参数识别方法.软件学报,2018,29(4):1039-1048
基于深度学习的图片中商品参数识别方法
Deep Learning for Parameter Recognition in Commodity Images
投稿时间:2017-04-29  修订日期:2017-06-26
DOI:10.13328/j.cnki.jos.005408
中文关键词:  目标检测  图像切割  光学字符识别  商品参数  深度学习
英文关键词:object detection  image segmentation  optical character recognition  product parameters  deep learning
基金项目:国家自然科学基金(61573363);北京市科委类脑计算专项(Z171100000117009);中国人民大学预研委托项目(15XNLQ01);中国人民大学拔尖创新人才培育资助计划
作者单位E-mail
丁明宇 大数据管理与分析方法研究北京市重点实验室(中国人民大学 信息学院), 北京 100872  
牛玉磊 大数据管理与分析方法研究北京市重点实验室(中国人民大学 信息学院), 北京 100872  
卢志武 大数据管理与分析方法研究北京市重点实验室(中国人民大学 信息学院), 北京 100872 luzhiwu@ruc.edu.cn 
文继荣 大数据管理与分析方法研究北京市重点实验室(中国人民大学 信息学院), 北京 100872  
摘要点击次数: 1341
全文下载次数: 2838
中文摘要:
      计算机计算性能的提升使得深度学习成为了可能.作为计算机视觉领域的重要发展方向之一的目标检测也开始结合深度学习方法并广泛应用于各行各业.受限于网络的复杂度和检测算法的设计,目标检测的速度和精度成为一个trade-off.目前电商领域的飞速发展产生了大量包含商品参数的图片,使用传统方法难以有效地提取出图片中的商品参数信息.针对这一问题,提出了一种将深度学习检测算法和传统OCR技术相结合的方法,在保证识别速度的同时大大提升了识别的精度.所研究的问题包括检测模型、针对特定数据训练、图片预处理以及文字识别等.首先比较了现有的目标检测算法,权衡其优缺点,然后使用YOLO模型完成检测任务,并针对YOLO模型中存在的不足进行了一定的改进和优化,得到了一个专用于检测图片中商品参数的目标检测模型,最后使用tesseract完成文字提取任务.在将整个流程结合到一起后,该系统不仅有着较好的识别精度,而且是高效和健壮的.最后讨论了优势和不足之处,并指出了未来工作的方向.
英文摘要:
      The improvements of computing performance make deep learning possible. As one of the important research directions in the field of computer vision, object detection has combined with deep learning methods and is widely used in all walks of life. Limited by the complexity of the network and the design of the detection algorithm, the speed and precision of the object detection becomes a trade-off. At present, the rapid development of electronic commerce has produced a large number of pictures containing the product parameters. The traditional method is hard to extract the information of the product parameters in the picture. This paper presents a method of combining deep learning detection algorithm with the traditional OCR technology to ensure the detection speed and at the same time greatly improve the accuracy of recognition. The paper focuses the following problems:The detection model, training for specific data, image preprocessing and character recognition. First, existing object detection algorithms are compared and their advantages and disadvantages are assessed. While the YOLO model is used to do the detection work, some improvements is proposed to overcome the shortcomings in the YOLO model. In addition, an object detection model is designed to detect the product parameters in images. Finally, tesseract is used to do the character recognition work. The experimental results show that the new system is efficient and effective in parameter recognition. At the end of this paper, the innovation and disadvantage of the presented method are discussed.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利