主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
郭文,游思思,张天柱,徐常胜.低秩重检测的多特征时空上下文的视觉跟踪.软件学报,2018,29(4):1017-1028
低秩重检测的多特征时空上下文的视觉跟踪
Object Tracking via Low-Rank Redetection Based Multiple Feature Fusion Spatio-Temporal Context Learning
投稿时间:2017-04-26  修订日期:2017-06-26
DOI:10.13328/j.cnki.jos.005402
中文关键词:  低秩近似矩阵分解  时空上下文  多特征融合  目标跟踪
英文关键词:low-rank approximate matrix decomposition  spatio-temporal context (STC)  multiple feature fusion  object tracking
基金项目:国家自然科学基金(61572296,61472227,61303086,61328205),山东省自然科学基金(ZR2015FL020);模式识别国家重点实验室开放课题(201600024)
作者单位E-mail
郭文 山东工商学院 信息与电子工程学院, 山东 烟台 264009
山东省高校感知技术与控制重点实验室, 山东 烟台 264009 
grewen@126.com 
游思思 山东工商学院 信息与电子工程学院, 山东 烟台 264009
山东省高校感知技术与控制重点实验室, 山东 烟台 264009 
 
张天柱 模式识别国家重点实验室(中国科学院 自动化研究所), 北京 100190  
徐常胜 模式识别国家重点实验室(中国科学院 自动化研究所), 北京 100190  
摘要点击次数: 768
全文下载次数: 716
中文摘要:
      时空上下文跟踪算法充分地利用空间上下文中包含的结构信息能够有效地对目标进行跟踪,实时性优良.但该算法仅利用单一的灰度信息,使得目标的表观表达缺乏判别性,而且该方法在由于遮挡等问题造成的跟踪漂移后法进行初始化.针对时空上下文算法存在的弱点,提出了一种基于低秩重检测的多特征时空上下文跟踪方法.首先,利用多特征对时空上下文进行多方面的提取,构建复合时空上下文信息,充分利用目标周围的特征信息,提高目标表观表达的有效性.其次,利用简单、有效的矩阵分解方式将跟踪到的历史跟踪信息进行低秩表达,将其引入有效的在线重检测器中来保持跟踪结构的一致稳定性,解决了跟踪方法在跟踪失败后的重定位问题,在一系列跟踪数据集上的实验结果表明,该算法与原始算法及当前的主流算法相比有更好的跟踪精度与鲁棒性,且满足实时性要求.
英文摘要:
      The spatio-temporal tracking (STC) algorithm can effectively track object using the structural information contained in the context around the object in real time. However the algorithm only exploits single gray object feature information in order to make the object representation discriminative. Moreover, it fails to initialize when tracking drift due to occlusion problems. Aiming at the existing weaknesses of the spatio-temporal context algorithm, a novel low-rank redetection based multiple feature fusion STC tracking algorithm is proposed in this paper. Firstly, multiple feature fusion based spatio-temporal context is extracted to construct complicated spatio-temporal context information, which improves the effectiveness of object representation by taking full advantage of the feature information around the object. Then, a simple and effective matrix decomposition method is used to give a low rank expression of the history tracking information, which can be embedded into the online detector. As a result, the uniform structure stability of the tracking algorithm is maintained to solve the relocation problem after the tracking failure. Experimental results on a series of tracking benchmark show the proposed algorithm has a better tracking precision and robustness than several stale-of-the-art methods, and it also have a good real-time performance.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利