主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
初蓓,李占山,张梦林,于海鸿.基于森林优化特征选择算法的改进研究.软件学报,2018,28(9):2547-2558
基于森林优化特征选择算法的改进研究
Research on Improvements of Feature Selection Using Forest Optimization Algorithm
投稿时间:2017-04-24  修订日期:2017-07-10
DOI:10.13328/j.cnki.jos.005395
中文关键词:  IFSFOA  初始化  更新机制  贪婪策略  特征选择
英文关键词:IFSFOA  initialization  updating mechanism  greedy strategy  feature selection
基金项目:国家自然科学基金(61170314,61272208);吉林省自然科学基金(20140101200JC)
作者单位E-mail
初蓓 吉林大学 计算机科学与技术学院, 吉林 长春 130012
符号计算与知识工程教育部重点实验室(吉林大学), 吉林 长春 130012 
 
李占山 吉林大学 计算机科学与技术学院, 吉林 长春 130012
符号计算与知识工程教育部重点实验室(吉林大学), 吉林 长春 130012 
 
张梦林 吉林大学 计算机科学与技术学院, 吉林 长春 130012
符号计算与知识工程教育部重点实验室(吉林大学), 吉林 长春 130012 
 
于海鸿 吉林大学 计算机科学与技术学院, 吉林 长春 130012
符号计算与知识工程教育部重点实验室(吉林大学), 吉林 长春 130012 
yuhh@jlu.edu.cn 
摘要点击次数: 2042
全文下载次数: 1242
中文摘要:
      在分类中,特征选择一直是一个重要而又困难的问题.最近的研究表明,森林优化特征选择算法(FSFOA)具有更好的分类性能及较好的维度缩减能力.然而,初始化阶段的随机性、更新机制上的局限性及局部播种阶段新树的劣质性严重限制了该算法的分类性能和维度缩减能力.该文采用一种新的初始化策略和更新机制,并在局部播种阶段加入贪婪策略,形成特征选择算法IFSFOA,在最大化分类性能的同时,最小化特征个数.实验阶段,IFSFOA使用SVM,J48和KNN分类器指导学习过程,通过机器学习数据库UCI上的小维、中维、高维数据集进行测试.实验结果表明:与FSFOA相比,IFSFOA在分类性能和维度缩减上均有明显提高.将IFSFOA算法与近几年提出的比较高效的特征选择方法进行对比,不论是在准确率,还是在维度缩减上,IFSFOA仍具有很强的竞争力.
英文摘要:
      In classification, feature selection has been an important, but difficult problem. Recent research results disclosed that feature selection using forest optimization algorithm (FSFOA) has a better classification performance and good dimensionality reduction ability. However, the randomness of initialization phase, the limitations of updating mechanism and the inferior quality of the new tree in the local seeding stage severely limit the classification performance and dimensionality reduction ability of the algorithm. In this paper, a new initialization strategy and updating mechanism are used and a greedy strategy is added in the local seeding stage to form a new feature selection algorithm (IFSFOA) in order to maximize the classification performance and simultaneously minimize the number of features. In experiment, IFSFOA uses SVM, J48 and KNN classifiers to guide the learning process while utilizing the machine learning database UCI for testing. The results show that compared with FSFOA, IFSFOA has a significant improvement in classification performance and dimensionality reduction. Comparing IFSFOA algorithm with more efficient feature selection methods proposed in recent years, IFSFOA is still very competitive in both accuracy and dimensionality reduction.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利