刘华锋,景丽萍,于剑.融合社交信息的矩阵分解推荐方法研究综述.软件学报,2018,29(2):340-362 |
融合社交信息的矩阵分解推荐方法研究综述 |
Survey of Matrix Factorization Based Recommendation Methods by Integrating Social Information |
投稿时间:2017-06-20 修订日期:2017-07-25 |
DOI:10.13328/j.cnki.jos.005391 |
中文关键词: 推荐系统 矩阵分解 社交推荐 社交网络 协同过滤 |
英文关键词:recommendation system matrix factorization social recommendation social network collaborative filtering |
基金项目:国家自然科学基金(61370129,61375062,61632004) |
|
摘要点击次数: 4740 |
全文下载次数: 5480 |
中文摘要: |
随着社交网络的发展,融合社交信息的推荐成为推荐领域中的一个研究热点.基于矩阵分解的协同过滤推荐方法(简称矩阵分解推荐方法)因其算法可扩展性好及灵活性高等诸多特点,成为研究人员在其基础之上进行社交推荐模型构建的重要原因.围绕基于矩阵分解的社交推荐模型,依据模型的构建方式对社交推荐模型进行综述.在实际数据上,对已有代表性社交推荐方法进行对比,分析各种典型社交推荐模型在不同视角下的性能(如整体用户、冷启动用户、长尾物品).最后,分析了基于矩阵分解的社交推荐模型及其求解算法存在的问题,并对未来研究方向与发展趋势进行展望. |
英文摘要: |
With the increasing of social network, social recommendation becomes hot research topic in recommendation systems. Matrix factorization based (MF-based) recommendation model gradually becomes the key component of social recommendation due to its high expansibility and flexibility. Thus, this paper focuses on MF-based social recommendation methods. Firstly, it reviews the existing social recommendation models according to the model construction strategies. Next, it conducts a series of experiments on real-world datasets to demonstrate the performance of different social recommendation methods from three perspectives including whole-users, cold start-users, and long-tail items. Finally, the paper analyzes the problems of MF-based social recommendation model, and discusses the possible future research directions and development trends in this research area. |
HTML 下载PDF全文 查看/发表评论 下载PDF阅读器 |