主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第9期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
黄金贵,王胜春.一类可分离SAT问题的O(1.890n)精确算法.软件学报,2018,29(12):3595-3603
一类可分离SAT问题的O(1.890n)精确算法
O(1.890n) Exact Algorithm for a Class of Separable SAT Problems
投稿时间:2017-03-17  修订日期:2017-07-07
DOI:10.13328/j.cnki.jos.005378
中文关键词:  可满足性问题  NP完全问题  正则可分离性  精确算法  算法复杂性
英文关键词:satisfiability problem  NP complete problem  regular separability  exact algorithm  algorithm complexity
基金项目:国家自然科学基金(61271264,11471110)
作者单位E-mail
黄金贵 湖南师范大学 信息科学与工程学院, 湖南 长沙 410081 hjg@hunnu.edu.cn 
王胜春 湖南师范大学 信息科学与工程学院, 湖南 长沙 410081  
摘要点击次数: 2634
全文下载次数: 1400
中文摘要:
      布尔可满足性问题(SAT)是指对于给定的布尔公式,是否存在一个可满足的真值指派.这是第1个被证明的NP完全问题,一般认为不存在多项式时间算法,除非P=NP.学者们大都研究了子句长度不超过k的SAT问题(k-SAT),从全局搜索到局部搜索,给出了大量的相对有效算法,包括随机算法和确定算法.目前,最好算法的时间复杂度不超过O((2-2/kn),当k=3时,最好算法时间复杂度为O(1.308n).而对于更一般的与子句长度k无关的SAT问题,很少有文献涉及.引入了一类可分离SAT问题,即3-正则可分离可满足性问题(3-RSSAT),证明了3-RSSAT是NP完全问题,给出了一般SAT问题3-正则可分离性的O(1.890n)判定算法.然后,利用矩阵相乘算法的研究成果,给出了3-RSSAT问题的O(1.890n)精确算法,该算法与子句长度无关.
英文摘要:
      The Boolean satisfiability problem (SAT) refers to whether there is a truth assignment that satisfies a given Boolean formula, which is the first confirmed NP complete problem that generally does not exist a polynomial time algorithm unless P=NP. However many practical applications of such problems often take place and are in need of an effective algorithm to reduce their time complexity. At present, many scholars have studied the problem of SAT with clause length not exceeding k (k-SAT). From global search to local search, a large number of effective algorithms, including random algorithm and determination algorithm are developed, and the best result, including probabilistic algorithm and deterministic algorithm for solving k-SAT problems, is that the time complexity is less than O((2-2/k)n), and when k=3 the time complexity of the best algorithm is O(1.308n). However, there is little literature about SAT problems that are more general than clause length k. This paper discusses a class of separable satisfiability problems (SSAT), in particular, the problem of 3-regular separable satisfiability (3-RSSAT) where the formula can be separated into several subformulas according to certain rules. The paper proves that 3-RSSAT problem is NP complete problem because any SAT problem can be polynomially reduced to it. To determine 3-regular separability of the general SAT problem, an algorithm is given with time complexity is no more than O(1.890n). Then by using the result in the matrix multiplication algorithm optimal research field, an O(1.890n) exact algorithm is constructed for solving the 3-RSSAT problem, which is the WELL algorithm independent of clause length.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利