主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
范虹,侯存存,朱艳春,姚若侠.烟花算法优化的软子空间MR图像聚类算法.软件学报,2017,28(11):3080-3093
烟花算法优化的软子空间MR图像聚类算法
Soft Subspace Algorithm for MR Image Clustering Based on Fireworks Optimization Algorithm
投稿时间:2017-01-24  修订日期:2017-04-11
DOI:10.13328/j.cnki.jos.005335
中文关键词:  烟花算法  软子空间聚类  噪声聚类  MR图像  图像分割
英文关键词:fireworks algorithm  soft subspace clustering  noise clustering  MR image  image segmentation
基金项目:国家自然科学基金(11471004);陕西省自然科学基金(2014JM2-6115);陕西省科学技术研究发展计划(2012K06-36)
作者单位
范虹 陕西师范大学 计算机科学学院, 陕西 西安 710062 
侯存存 陕西师范大学 计算机科学学院, 陕西 西安 710062 
朱艳春 中国科学院 深圳先进技术研究院 生物医学与健康工程研究所, 广东 深圳 518055 
姚若侠 陕西师范大学 计算机科学学院, 陕西 西安 710062 
摘要点击次数: 1432
全文下载次数: 1205
中文摘要:
      现有的软子空间聚类算法在分割MR图像时易受随机噪声的影响,而且算法因依赖于初始聚类中心的选择而容易陷入局部最优,导致分割效果不理想.针对这一问题,提出一种基于烟花算法的软子空间MR图像聚类算法.算法首先设计一个结合界约束与噪声聚类的目标函数,弥补现有算法对噪声数据敏感的缺陷,并提出一种隶属度计算方法,快速、准确地寻找簇类所在子空间;然后,在聚类过程中引入自适应烟花算法,有效地平衡局部与全局搜索,弥补现有算法容易陷入局部最优的不足.EWKM,FWKM,FSC,LAC算法在UCI数据集、人工合成图像、Berkeley图像数据集以及临床乳腺MR图像、脑部MR图像上的聚类结果表明,所提出的算法不仅在UCI数据集上能够取得较好的结果,而且对图像聚类也具有较好的抗噪性能,尤其是对MR图像的聚类具有较高的精度和鲁棒性,能够较为有效地实现MR图像的分割.
英文摘要:
      The existing soft subspace clustering algorithm is susceptible to random noise when MR images are segmented, and it is easy to fall into local optimum due to the choice of the initial clustering centers, which leads to unsatisfactory segmentation results. To solve these problems, this paper proposes a soft subspace algorithm for MR image clustering based on fireworks algorithm. Firstly, a new objective function with boundary constraints and noise clustering is designed to overcome the shortcomings of the existing algorithms that are sensitive to noise data. Next, a new method of calculating affiliation degree is proposed to find the subspace where the cluster is located quickly and accurately. Then, adaptive fireworks algorithm is introduced in the clustering process to effectively balance the local and global search, overcoming the disadvantage of falling into local optimum in the existing algorithms. Comparing with EWKM, FWKM,FSC and LAC algorithms, experiments are conducted on UCI datasets, synthetic images, Berkeley image datasets, as well as clinical breast MR images and brain MR images. The results demonstrate that the proposed algorithm not only can get better results on UCI datasets, but also has better anti-noise performance. Especially for MR images, high clustering precision and robustness can be obtained, and effective MR images segmentation can be achieved.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利