新型非易失存储环境下事务型数据管理技术研究
作者:
基金项目:

国家自然科学基金(61472321,61332006,61672434);国家高技术研究发展计划(863)(2015AA015307)


State-of-the-Art Survey of Transaction Processing in Non-Volatile Memory Environments
Author:
Fund Project:

National Natural Science Foundation of China (61472321, 61332006, 61672434); National High Technology Research and Development Program (863) of China (2015AA015307)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [138]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为适应底层存储架构的变化,上层数据库系统已经经历了多轮的演化与变革.在大数据环境下,以非易失、大容量、低延迟、按字节寻址等为特征的新型非易失存储器件(NVM)的出现,势必对数据库系统带来重大影响,相关的存储与事务处理技术是其中值得关注的重要环节.首先,概述了事务型数据库系统随存储环境发展的历史与趋势;然后,对影响上层数据管理系统设计的非易失性存储技术以及面向大数据应用领域与硬件环境优化的事务技术进行综述与分析;最后,对非易失存储环境下事务型数据库面临的挑战与研究趋势进行了展望.

    Abstract:

    The design of the upper lever database has experienced several rounds of development and transformation to adapt to the changing architecture of the underlying storage system. In the big data era, the emergence of the novel non-volatile memory (NVM) technologies, which exhibit a series of non-volatile (persistent writes), high-capacity, low-latency and byte-addressable characteristics, has brought significant impact on traditional database systems, especially for techniques related to storage and transaction processing. First, in this paper, the phylogeny and development trend of the OLTP database along with the storage subsystem is introduced. Then, the non-volatile memory technology which affects the upper data management system design is reviewed along with an analysis on the domain-oriented and the NVM-oriented transaction technologies. Finally, challenges and opportunities are addressed for the NVM-oriented OLTP database.

    参考文献
    [1] Stonebraker M, Cetintemel U. "One size fits all": An idea whose time has come and gone. In: Proc. of the 21st Int'l Conf. on Data Engineering (ICDE 2005). IEEE Computer Society, 2005. 2-11.[doi: 10.1109/icde.2005.1]
    [2] Luo L, Liu Y, Qian DP. Survey on in-memory computing technology. Ruan Jian Xue Bao/Journal of Software, 2016,27(8): 2147-2167(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5103.htm[doi: 10.13328/j.cnki.jos.005103]
    [3] Gray J. The transaction concept: Virtues and limitations (invited paper). In: Proc. of the 7th Int'l Conf. on Very Large Data Bases (VLDB'81). Cannes: VLDB Endowment, 1981. 144-154. http://www.eecs.harvard.edu/~margo/cs165/papers/gray-1981.pdf
    [4] Harizopoulos S, Abadi DJ, Madden S, Stonebraker M. OLTP through the looking glass, and what we found there. In: Proc. of the 2008 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2008). Vancouver: ACM Press, 2008. 981-992.[doi: 10.1145/1376616.1376713]
    [5] De Witt DJ, Katz RH, Olken F, Shapiro LD, Stonebraker MR, Wood DA. Implementation techniques for main memory database systems. In: Proc. of the 1984 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD'84). Boston: ACM Press, 1984. 1-8.[doi: 10.1145/602259.602261]
    [6] Sikka V, Farber F, Goel A, Lehner W. SAP HANA: The evolution from a modern main-memory data platform to an enterprise application platform. Proc. of the VLDB Endowment, 2013,6(11):1184-1185.[doi: 10.14778/2536222.2536251]
    [7] Kemper A, Neumann T. HyPer: A hybrid OLTP&OLAP main memory database system based on virtual memory snapshots. In: Proc. of the IEEE Int'l Conf. on Data Engineering (ICDE 2011). IEEE Computer Society, 2011. 195-206.[doi: 10.1109/icde.2011. 5767867]
    [8] Team CT. In-Memory data management for consumer transactions the timesten approach. In: Proc. of the'99 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD'99). Philadelphia: ACM Press, 1999. 528-529.[doi: 10.1145/304182.304244]
    [9] Diaconu C, Freedman C, Ismert E, Larson PA, Mittal P, Stonecipher R, Verma N, Zwilling M. Hekaton: SQL server's memory-optimized OLTP engine. In: Proc. of the ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2013). New York: ACM Press, 2013. 1243-1254.[doi: 10.1145/2463676.2463710]
    [10] Astrahan MM, Blasgen MW, Chamberlin DD, Eswaran KP, Gray JN, Griffiths PP, King WF, Lorie RA, McJones PR, Mehl JW, Putzolu GR, Traiger IL, Wade BW, Watson V. System R: Relational approach to database management. ACM Trans. on Database Systems, 1976,1(2):97-137.[doi: 10.1145/320455.320457]
    [11] Mohan C, Haderle D, Lindsay B, Pirahesh H, Schwarz P. ARIES: A transaction recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM Trans. on Database Systems, 1992,17(1):94-162.[doi: 10.1145/128765.128770]
    [12] Kallman R, Kimura H, Natkins J, Pavlo A, Rasin A, Zdonik S, Jones EPC, Madden S, Stonebraker M, Zhang Y, Hugg J, Abadi DJ. H-Store: A high-performance, distributed main memory transaction processing system. Proc. of the VLDB Endowment, 2008,1(2): 1496-1499.[doi: 10.14778/1454159.1454211]
    [13] Pisharath J, Choudhary A, Kandemir M. Energy management schemes for memory-resident database systems. In: Proc. of the 13th ACM Int'l Conf. on Information and Knowledge Management (CIKM 2004). Washington: ACM Press, 2004. 218-227.[doi: 10.1145/1031171.1031214]
    [14] Lv Y, Cui B, He B, Chen X. Operation-Aware buffer management in flash-based systems. In: Proc. of the 2011 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2011). Athens: ACM Press, 2011. 13-24.[doi: 10.1145/1989323.1989326]
    [15] Kang WH, Lee SW, Moon B, Kee YS, Oh M. Durable write cache in flash memory SSD for relational and NoSQL databases. In: Proc. of the 2014 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2014). Snowbird: ACM Press, 2014. 529-540.[doi: 10.1145/2588555.2595632]
    [16] Agrawal D, Ganesan D, Sitaraman R, Diao Y, Singh S. Lazy-Adaptive tree: An optimized index structure for flash devices. Proc. of the VLDB Endowment, 2009,2(1):361-372.[doi: 10.14778/1687627.1687669]
    [17] Athanassoulis M, Ailamaki A. BF-Tree: Approximate tree indexing. Proc. of the VLDB Endowment, 2014,7(14):1881-1892.[doi: 10.14778/2733085.2733094]
    [18] Shah MA, Harizopoulos S, Wiener JL, Graefe G. Fast scans and joins using flash drives. In: Proc. of the 4th Int'l Workshop on Data Management on New Hardware (DaMoN 2008). Vancouver: ACM Press, 2008. 17-24.[doi: 10.1145/1457150.1457154]
    [19] Tsirogiannis D, Harizopoulos S, Shah MA, Wiener JL, Graefe G. Query processing techniques for solid state drives. In: Proc. of the 2009 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2009). Providence: ACM Press, 2009. 59-72.[doi: 10.1145/1559845.1559854]
    [20] Fang HW, Yeh MY, Kuo TW. MLC-Flash-Friendly logging and recovery for databases. In: Proc. of the 28th Annual ACM Symp. on Applied Computing (SAC 2013). Coimbra: ACM Press, 2013. 1541-1546.[doi: 10.1145/2480362.2480648]
    [21] On ST, Xu J, Choi B, Hu H, He B. Flag commit: Supporting efficient transaction recovery in flash-based DBMSs. IEEE Trans. on Knowledge and Data Engineering, 2012,24(9):1624-1639.[doi: 10.1109/TKDE.2011.122]
    [22] Chen TY, Chang YH, Ho CC, Chen SH. Enabling sub-blocks erase management to boost the performance of 3D NAND flash memory. In: Proc. of the 53rd Annual Design Automation Conf. (DAC 2016). Austin: ACM Press, 2016. 1-6.[doi: 10.1145/2897937.2898018]
    [23] Lee SW, Moon B, Park C, Kim JM, Kim SW. A case for flash memory ssd in enterprise database applications. In: Proc. of the 2008 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2008). Vancouver: ACM Press, 2008. 1075-1086.[doi: 10.1145/1376616.1376723]
    [24] Wei Q, Chen J, Chen C. Accelerating file system metadata access with byte-addressable nonvolatile memory. Trans. on Storage, 2015,11(3):1-28.[doi: 10.1145/2766453]
    [25] Xue CJ, Zhang Y, Chen Y, Sun G, Yang JJ, Li H. Emerging non-volatile memories: Opportunities and challenges. In: Proc. of the 7th IEEE/ACM/IFIP Int'l Conf. on Hardware/software Codesign and System Synthesis (CODES+ISSS 2011). Taipei: ACM Press, 2011. 325-334.[doi: 10.1145/2039370.2039420]
    [26] Freitas RF. Storage class memory: Technology, systems and applications. In: Proc. of the 2009 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2009). Providence: ACM Press, 2009. 985-986.[doi: 10.1145/1559845.1559961]
    [27] Qureshi MK, Srinivasan V, Rivers JA. Scalable high performance main memory system using phase-change memory technology. SIGARCH Computer Architecture News, 2009,37(3):24-33.[doi: 10.1145/1555815.1555760]
    [28] Mengjie M, Guangyu S, Yong L, Jones AK, Yiran C. Prefetching techniques for STT-RAM based last-level cache in CMP systems. In: Proc. of the 19th Asia and South Pacific Design Automation Conf. (ASP-DAC 2014). 2014. 67-72.[doi: 10.1109/ASPDAC. 2014.6742868]
    [29] Bishnoi R, Oboril F, Ebrahimi M, Tahoori MB. Avoiding unnecessary write operations in STT-MRAM for low power implementation. In: Proc. of the 15th Int'l Symp. on Quality Electronic Design (ISQED 2014). 2014. 548-553.[doi: 10.1109/ISQED.2014.6783375]
    [30] Junwhan A, Sungjoo Y, Kiyoung C. DASCA: Dead write prediction assisted STT-RAM cache architecture. In: Proc. of the IEEE 20th Int'l Symp. on High Performance Computer Architecture (HPCA 2014). 2014. 25-36.[doi: 10.1109/HPCA.2014.6835944]
    [31] Li J, Shi L, Li Q, Xue CJ, Chen Y, Xu Y. Cache coherence enabled adaptive refresh for volatile STT-RAM. In: Proc. of Design, Automation & Test in Europe Conf. & Exhibition (DATE 2013). 2013. 1247-1250.[doi: 10.7873/DATE.2013.258]
    [32] Mittal S. A survey of architectural techniques for managing process variation. ACM Computing Surveys, 2016,48(4):1-29.[doi: 10.1145/2871167]
    [33] Mittal S, Vetter J. A technique for improving lifetime of non-volatile caches using write-minimization. Journal of Low Power Electronics & Applications, 2016,6(1).[doi: 10.3390/jlpea6010001]
    [34] Wang J, Dong X, Xie Y, Jouppi NP. Endurance-Aware cache line management for non-volatile caches. ACM Trans. on Architecture and Code Optimization, 2014,11(1):1-25.[doi: 10.1145/2579671]
    [35] Mittal S, Vetter JS. EqualWrites: Reducing intra-set write variations for enhancing lifetime of non-volatile caches. IEEE Trans. on Very Large Scale Integration Systems, 2015.[doi: 10.1109/TVLSI.2015.2389113]
    [36] Ahn J, Yoo S, Choi K. Write intensity prediction for energy-efficient non-volatile caches. In: Proc. of the IEEE Int'l Symp. on Low Power Electronics and Design (ISLPED 2013). 2013. 223-228.[doi: 10.1109/ISLPED.2013.6629298]
    [37] Qureshi MK, Franceschini MM, Lastras-Monta LA. Improving read performance of phase change memories via write cancellation and write pausing. In: Proc. of the 2010 IEEE 16th Int'l Symp. on High Performance Computer Architecture (HPCA 2010). 2010. 1-11.[doi: 10.1109/HPCA.2010.5416645]
    [38] Qureshi MK, Franceschini MM, Jagmohan A, Lastras LA. PreSET: Improving performance of phase change memories by exploiting asymmetry in write times. SIGARCH Computer Architecture News, 2012,40(3):380-391.[doi: 10.1145/2366231. 2337203]
    [39] Yue J, Zhu Y. Accelerating write by exploiting PCM asymmetries. In: Proc. of the IEEE 19th Int'l Symp. on High Performance Computer Architecture (HPCA 2013). 2013. 282-293.[doi: 10.1109/HPCA.2013.6522326]
    [40] Jacobvitz AN, Calderbank R, Sorin DJ. Coset coding to extend the lifetime of memory. In: Proc. of the 2013 IEEE 19th Int'l Symp. on High Performance Computer Architecture (HPCA 2013). 2013. 222-233.[doi: 10.1109/HPCA.2013.6522321]
    [41] Cho S, Lee H. Flip-N-Write: A simple deterministic technique to improve PRAM write performance, energy and endurance. In: Proc. of the 42nd Annual IEEE/ACM Int'l Symp. on Microarchitecture (MICRO 2009). New York: ACM Press, 2009. 347-357.[doi: 10.1145/1669112.1669157]
    [42] Yun J, Lee S, Yoo S. Bloom filter-based dynamic wear leveling for phase-change RAM. In: Proc. of the Conf. on Design, Automation and Test in Europe (DATE 2012). Dresden: EDA Consortium, 2012. 1513-1518.[doi: 10.1109/DATE.2012.6176713]
    [43] Chen CH, Hsiu PC, Kuo TW, Yang CL, Wang CYM. Age-Based PCM wear leveling with nearly zero search cost. In: Proc. of the 49th Annual Design Automation Conf. (DAC 2012). San Francisco: ACM Press, 2012. 453-458.[doi: 10.1145/2228360.2228439]
    [44] Sun G, Niu D, Ouyang J, Xie Y. A frequent-value based PRAM memory architecture. In: Proc. of the 16th Asia and South Pacific Design Automation Conf. (ASPDAC 2011). Yokohama: IEEE Press, 2011. 211-216.[doi: 10.1109/ASPDAC.2011.5722186]
    [45] Rodriguez-Rodriguez R, Castro F, Chaver D, Pinuel L, Tirado F. Reducing writes in phase-change memory environments by using efficient cache replacement policies. In: Proc. of the Design, Automation & Test in Europe Conf. & Exhibition (DATE 2013). 2013. 93-96.[doi: 10.7873/DATE.2013.033]
    [46] Awad A, Blagodurov S, Solihin Y. Write-Aware management of NVM-based memory extensions. In: Proc. of the 2016 Int'l Conf. on Supercomputing (ICS 2016). Istanbul: ACM Press, 2016. 1-12.[doi: 10.1145/2925426.2926284]
    [47] Yang J, Minturn DB, Hady F. When poll is better than interrupt. In: Proc. of the 10th USENIX Conf. on File and Storage Technologies (FAST 2012). San Jose: USENIX Association, 2012. 3. https://www.usenix.org/legacy/events/fast12/tech/full_papers/Yang.pdf
    [48] Dhiman G, Ayoub R, Rosing T. PDRAM: A hybrid PRAM and DRAM main memory system. In: Proc. of the Annual Design Automation Conf. (DAC 2009). San Francisco: ACM Press, 2009. 664-469.[doi: 10.1145/1629911.1630086]
    [49] Kim D, Lee S, Chung J, Kim DH, Woo DH, Yoo S, Lee S. Hybrid DRAM/PRAM-based main memory for single-chip CPU/GPU. In: Proc. of the 49th Annual Design Automation Conf. (DAC 2012). San Francisco: ACM Press, 2012. 888-896.[doi: 10.1145/2228360.2228519]
    [50] Yoon H, Meza J, Ausavarungnirun R, Harding RA, Mutlu O. Row buffer locality aware caching policies for hybrid memories. In: Proc. of the 2012 IEEE 30th Int'l Conf. on Computer Design (ICCD 2012). 2012. 337-344.[doi: 10.1109/ICCD.2012.6378661]
    [51] Hu J, Zhuge Q, Xue CJ, Tseng WC, Sha EHM. Software enabled wear-leveling for hybrid PCM main memory on embedded systems. In: Proc. of the Design, Automation & Test in Europe Conf. & Exhibition (DATE 2013). 2013. 599-602.[doi: 10.7873/DATE.2013.131]
    [52] Lee HG, Baek S, Nicopoulos C, Kim J. An energy-and performance-aware DRAM cache architecture for hybrid DRAM/PCM main memory systems. In: Proc. of the 2011 IEEE 29th Int'l Conf. on Computer Design (ICCD 2011). 2011. 381-387.[doi: 10.1109/ICCD.2011.6081427]
    [53] Meza J, Chang J, Yoon H, Mutlu O, Ranganathan P. Enabling efficient and scalable hybrid memories using fine-granularity DRAM cache management. Computer Architecture Letters, 2012,11(2):61-64.[doi: 10.1109/L-CA.2012.2]
    [54] Volos H, Tack AJ, Swift MM. Mnemosyne: Lightweight persistent memory. ACM SIGPLAN Notices, 2011,47(4):91-104.[doi: 10.1145/2248487.1950379]
    [55] Coburn J, Caulfield AM, Akel A, Grupp LM, Gupta RK, Jhala R, Swanson S. NV-Heaps: Making persistent objects fast and safe with next-generation, non-volatile memories. SIGARCH Computer Architecture News, 2011,39(1):105-118.[doi: 10.1145/1961295.1950380]
    [56] Hwang T, Jung J, Won Y. HEAPO: Heap-Based persistent object store. Trans. on Storage, 2014,11(1):1-21.[doi: 10.1145/2629619]
    [57] Fang R, Hsiao HI, He B, Mohan C, Wang Y. High performance database logging using storage class memory. In: Proc. of the IEEE 27th Int'l Conf. on Data Engineering (ICDE 2011). 2011. 1221-1231.[doi: 10.1109/ICDE.2011.5767918]
    [58] Swanson S, Caulfield AM. Refactor, reduce, recycle: Restructuring the I/O stack for the future of storage. Computer, 2013,46(8): 52-59.[doi: 10.1109/MC.2013.222]
    [59] PRAMFS Team. Protected and persistent RAM file system. 2016. http://pRamfs.SourceForge.net
    [60] Condit J, Nightingale EB, Frost C, Ipek E, Lee B, Burger D, Coetzee D. Better I/O through byte-addressable, persistent memory. In: Proc. of the ACM SIGOPS 22nd Symp. on Operating Systems Principles (SOSP 2009). Big Sky: ACM Press, 2009. 133-146.[doi: 10.1145/1629575.1629589]
    [61] Sha EHM, Chen X, Zhuge Q, Shi L, Jiang W. A new design of in-memory file system based on file virtual address framework. IEEE Trans. on Computers, 2016,65(10):2959-2972.[doi: 10.1109/TC.2016.2516019]
    [62] Lee S, Kim J, Lee M, Lee H, Eom YI. Last block logging mechanism for improving performance and lifetime on SCM-based file system. In: Proc. of the Int'l Conf. on Ubiquitous Information Management and Communication (ICUIMC 2014). 2014. 1-4.[doi: 10.1145/2557977.2558014]
    [63] Caulfield AM, De A, Coburn J, Mollow TI, Gupta RK, Swanson S. Moneta: A high-performance storage array architecture for next-generation, non-volatile memories. In: Proc. of the 201043rd Annual IEEE/ACM Int'l Symp. on Microarchitecture (MICRO 2010). IEEE Computer Society, 2010. 385-395.[doi: 10.1109/micro.2010.33]
    [64] Volos H, Panneerselvam S, Nalli S, Swift MM. Storage-Class memory needs flexible interfaces. In: Proc. of the 4th Asia-Pacific Workshop on Systems (APSys 2013). Singapore: ACM Press, 2013. 1-7.[doi: 10.1145/2500727.2500732]
    [65] Volos H, Nalli S, Panneerselvam S, Varadarajan V, Saxena P, Swift MM. Aerie: Flexible file-system interfaces to storage-class memory. In: Proc. of the 9th European Conf. on Computer Systems (Eurosys 2014). Amsterdam: ACM Press, 2014. 1-14.[doi: 10.1145/2592798.2592810]
    [66] Caulfield AM, Mollov TI, Eisner LA, De A, Coburn J, Swanson S. Providing safe, user space access to fast, solid state disks. SIGARCH Computer Architecture News, 2012,40(1):387-400.[doi: 10.1145/2189750.2151017]
    [67] Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR, Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA. The gem5 simulator. SIGARCH Computer Architecture News, 2011,39(2):1-7.[doi: 10. 1145/2024716.2024718]
    [68] Rosenfeld P, Cooper-Balis E, Jacob B. DRAMSim2: A cycle accurate memory system simulator. IEEE Computer Architecture Letters, 2011,10(1):16-19.[doi: 10.1109/L-CA.2011.4]
    [69] Binkert NL, Dreslinski RG, Hsu LR, Lim KT, Saidi AG, Reinhardt SK. The M5 simulator: modeling networked systems. IEEE Micro, 2006,26(4):52-60.[doi: 10.1109/MM.2006.82]
    [70] Martin MMK, Sorin DJ, Beckmann BM, Marty MR, Xu M, Alameldeen AR, Moore KE, Hill MD, Wood DA. Multifacet's general execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH Computer Architecture News, 2005,33(4):92-99.[doi: 10. 1145/1105734.1105747]
    [71] Dulloor SR, Kumar S, Keshavamurthy A, Lantz P, Reddy D, Sankaran R, Jackson J. System software for persistent memory. In: Proc. of the 9th European Conf. on Computer Systems (Eurosys 2014). Amsterdam: ACM Press, 2014. 1-15.[doi: 10.1145/2592798.2592814]
    [72] Dong X, Xu C, Xie Y, Jouppi NP. NVSim: A circuit-level performance, energy, and area model for emerging nonvolatile memory. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 2012,31(7):994-1007.[doi: 10.1109/TCAD.2012. 2185930]
    [73] Eken E, Song L, Bayram I, Xu C, Wen W, Xie Y, Chen Y. NVSim-VXs: An improved NVSim for variation aware STT-RAM simulation. In: Proc. of the 53rd Annual Design Automation Conf. (DAC 2016). Austin: ACM Press, 2016. 1-6.[doi: 10.1145/2897937.2898053]
    [74] Poremba M, Zhang T, Xie Y. NVMain 2.0: A user-friendly memory simulator to model (non-) volatile memory systems. IEEE Computer Architecture Letters, 2015,14(2):140-143.[doi: 10.1109/LCA.2015.2402435]
    [75] Stonebraker M. SQL databases v. NoSQL databases. Communications of the ACM, 2010,53(4):10-11.[doi: 10.1145/1721654. 1721659]
    [76] Ozcan F, Tatbul N, Abadi DJ, Kornacker M, Mohan C, Ramasamy K, Wiener J. Are we experiencing a big data bubble? In: Proc. of the 2014 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2014). Snowbird: ACM Press, 2014. 1407-1408.[doi: 10.1145/2588555.2618215]
    [77] Pavlo A, Aslett M. What's really new with NewSQL? SIGMOD Record, 2016,45(2):45-55.[doi: 10.1145/3003665.3003674]
    [78] Gilbert S, Lynch N. Brewer's conjecture and the feasibility of consistent, available, partition-tolerant Web services. SIGACT News, 2002,33(2):51-59.[doi: 10.1145/564585.564601]
    [79] Pritchett D. BASE: An acid alternative. Queue, 2008,6(3):48-55.[doi: 10.1145/1394127.1394128]
    [80] Ji Z, Ganchev I, Droma MO, Ding T. A distributed redis framework for use in the UCWW. In: Proc. of the 2014 Int'l Conf. on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC 2014). 2014. 241-244.[doi: 10.1109/CyberC.2014.50]
    [81] Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. ACM Trans. on Computer Systems, 2008,26(2):1-26.[doi: 10.1145/1365815.1365816]
    [82] Lakshman A, Malik P. Cassandra: A decentralized structured storage system. ACM SIGOPS Operating Systems Review, 2010, 44(2):35-40.[doi: 10.1145/1773912.1773922]
    [83] Hunt P, Konar M, Junqueira FP, Reed B. ZooKeeper: Wait-Free coordination for internet-scale systems. In: Proc. of the USENIX Conf. on USENIX Annual Technical Conf. (USENIXATC 2010). Boston: USENIX Association, 2010. 11-11. https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
    [84] Das S, Agrawal D, Abbadi AE. G-Store: A scalable data store for transactional multi key access in the cloud. In: Proc. of the 1st ACM Symp. on Cloud Computing (SoCC 2010). Indianapolis: ACM Press, 2010. 163-174.[doi: 10.1145/1807128.1807157]
    [85] Baker J, Bond C, Corbett JC, Furman J, Khorlin A, Larson J, Leon JM, Li Y, Lloyd A, Yushprakh V. Megastore: Providing scalable, highly available storage for interactive services. In: Proc. of the Conf. on Innovative Data Systems Research (CIDR 2013). 2011. 223-234. http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
    [86] Peng D, Dabek F. Large-Scale incremental processing using distributed transactions and notifications. In: Proc. of the USENIX Conf. on Operating Systems Design and Implementation (OSDI 2010). Vancouver: USENIX Association, 2010. 1-15. https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Peng.pdf
    [87] Krueger J, Kim C, Grund M, Satish N, Schwalb D, Chhugani J, Plattner H, Dubey P, Zeier A. Fast updates on read-optimized databases using multi-core CPUs. Proc. of the VLDB Endowment, 2011,5(1):61-72.[doi: 10.14778/2047485.2047491]
    [88] VoltDB Team. VoltDB. 2016. https://www.voltdb.com/
    [89] Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S, Gubarev A, Heiser C, Hochschild P, Hsieh W, Kanthak S, Kogan E, Li H, Lloyd A, Melnik S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L, Saito Y, Szymaniak M, Taylor C, Wang R, Woodford D. Spanner: Google's globally-distributed database. In: Proc. of the 10th USENIX Conf. on Operating Systems Design and Implementation (OSDI 2012). Hollywood: USENIX Association, 2012. 251-264. https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf
    [90] CockroachDB Team. CockroachDB. 2016. https://www.cockroachlabs.com/
    [91] Yuan LY, Wu L, You JH, Chi Y. A demonstration of rubato DB: A highly scalable newSQL database system for OLTP and big data applications. In: Proc. of the 2015 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2015). Melbourne: ACM Press, 2015. 907-912.[doi: 10.1145/2723372.2735380]
    [92] Wu L, Yuan LY, You JH. BASIC: An alternative to BASE for large-scale data management system. In: Proc. of the IEEE Int'l Conf. on Big Data (IEEE Big Data 2014). 2014. 5-14.[doi: 10.1109/BigData.2014.7004206]
    [93] DeBrabant J, Pavlo A, Tu S, Stonebraker M, Zdonik S. Anti-Caching: A new approach to database management system architecture. Proc. of the VLDB Endowment (VLDB 2013), 2013,6(14):1942-1953.[doi: 10.14778/2556549.2556575]
    [94] Stoica R, Ailamaki A. Enabling efficient OS paging for main-memory OLTP databases. In: Proc. of the 9th Int'l Workshop on Data Management on New Hardware (DaMoN 2013). New York: ACM Press, 2013. 1-7.[doi: 10.1145/2485278.2485285]
    [95] Pavlo A. Emerging hardware trends in large-scale transaction processing. IEEE Internet Computing, 2015,19(3):68-71.[doi: 10.1109/MIC.2015.59]
    [96] Stonebraker M. Errors in database systems, eventual consistency, and the CAP theorem. 2010. http://cacm.acm.org/blogs/blog-cacm/83396-errors-in-database-systems-eventual-consistency-and-the-cap-theorem/fulltext.
    [97] Abadi D. Consistency tradeoffs in modern distributed database system design: CAP is only part of the story. Computer, 2012,45(2): 37-42.[doi: 10.1109/mc.2012.33]
    [98] Zhenkun Y, Chuanhui Y, Zhen L. OceanBase-A massive structured data storage management system. E-science Technology & Application, 2013,4(1):41-48.
    [99] Bailis P, Davidson A, Fekete A, Ghodsi A, Hellerstein JM, Stoica I. Highly available transactions: Virtues and limitations. Proc. of the VLDB Endowment, 2013,7(3):181-192.[doi: 10.14778/2732232.2732237]
    [100] Campos AF, Esteves S, Veiga L. HBase++: Extending HBase with client-centric consistency guarantees for geo-replication. 2013. http://www.gsd.inesc-id.pt/~sesteves/papers/inforum14-hbase-plus-plus.pdf
    [101] Helland P. Life beyond distributed transactions: An apostate's opinion. In: Proc.of the Biennial Conf. on Innovative DataSystems Research (CIDR 2007). Asilomar, 2007. 132-141. http://cidrdb.org/cidr2007/papers/cidr07p15.pdf
    [102] Stonebraker M, Madden S, Abadi DJ, Harizopoulos S, Hachem N, Helland P. The end of an architectural era (it's time for a complete rewrite). In: Proc. of the 33rd Int'l Conf. on Very Large Data Bases (VLDB 2007). Vienna: VLDB Endowment, 2007. 1150-1160. http://www.cs.yale.edu/homes/dna/vldb07hstore.pdf
    [103] Pavlo A, Curino C, Zdonik S. Skew-Aware automatic database partitioning in shared-nothing, parallel OLTP systems. In: Proc. of the 2012 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2012). Scottsdale: ACM Press, 2012. 61-72.[doi: 10. 1145/2213836.2213844]
    [104] NuoDB Team. NuoDB. 2016. http://www.nuodb.com/
    [105] MemSQL Team. MemSQL. 2016. http://www.memsql.com/
    [106] Kemme B, Alonso G. Don't be lazy, be consistent: Postgres-R, a new way to implement database replication. In: Proc. of the 26th Int'l Conf. on Very Large Data Bases (VLDB 2000). Morgan Kaufmann Publishers, 2000. 134-143. https://static.aminer.org/pdf/PDF/000/642/954/don_t_be_lazy_be_consistent_postgres_r_a_new.pdf
    [107] Jiminez-Peris R, Patino-Martinez M, Arevalo S. Deterministic scheduling for transactional multithreaded replicas. In: Proc. of the 19th IEEE Symp. on Reliable Distributed Systems (SRDS 2000). 2000. 164-173.[doi: 10.1109/RELDI.2000.885404]
    [108] Thomson A, Diamond T, Weng SC, Ren K, Shao P, Abadi DJ. Calvin: Fast distributed transactions for partitioned database systems. In: Proc. of the 2012 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2012). Scottsdale: ACM Press, 2012. 1-12.[doi: 10.1145/2213836.2213838]
    [109] Ren K, Thomson A, Abadi DJ. An evaluation of the advantages and disadvantages of deterministic database systems. Proc. of the VLDB Endowment, 2014,7(10):821-832.[doi: 10.14778/2732951.2732955]
    [110] Sikka V, Farber F, Goel A, Lehner W. SAP HANA: The evolution from a modern main-memory data platform to an enterprise application platform. Proc. of the VLDB Endowment, 2013,6(11):1184-1185.[doi: 10.14778/2536222.2536251]
    [111] Ferro DG, Junqueira F, Kelly I, Reed B, Yabandeh M. Omid: Lock-Free transactional support for distributed data stores. In: Proc. of the 2014 IEEE 30th Int'l Conf. on Data Engineering (ICDE 2014). 2014. 676-687.[doi: 10.1109/ICDE.2014.6816691]
    [112] Elmore AJ, Arora V, Taft R, Pavlo A, Agrawal D, Abbadi AE. Squall: Fine-Grained live reconfiguration for partitioned main memory databases. In: Proc. of the 2015 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2015). Melbourne: ACM Press, 2015. 299-313.[doi: 10.1145/2723372.2723726]
    [113] DeBrabant J, Arulraj J, Pavlo A, Stonebraker M, Zdonik SB, Dulloor S. A prolegomenon on OLTP database systems for non-volatile memory. In: Proc.of the 5th Int'l Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures(ADMS). Hangzhou, 2014. 57-63. http://adms-conf.org/2014/adms14_debrabant.pdf
    [114] Coburn J, Bunker T, Schwarz M, Gupta R, Swanson S. From ARIES to MARS: Transaction support for next-generation, solid-state drives. In: Proc. of the 24th ACM Symp. on Operating Systems Principles (SOSP 2013). Farminton: ACM Press, 2013. 197-212.[doi: 10.1145/2517349.2522724]
    [115] Pelley S, Wenisch TF, Gold BT, Bridge B. Storage management in the NVRAM era. Proc. of the VLDB Endowment, 2013,7(2): 121-132.[doi: 10.14778/2732228.2732231]
    [116] Gao S, Xu J, Haerder T, He B, Choi B, Hu H. PCMLogging: Optimizing transaction logging and recovery performance with PCM. IEEE Trans. on Knowledge & Data Engineering, 2015,27(12):3332-3346.[doi: 10.1109/TKDE.2015.2453154]
    [117] Arulraj J, Pavlo A, Dulloor SR. Let's talk about storage & recovery methods for non-volatile memory database systems. In: Proc. of the 2015 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2015). Melbourne: ACM Press, 2015. 707-722.[doi: 10.1145/2723372.2749441]
    [118] Huang J, Schwan K, Qureshi MK. NVRAM-Aware logging in transaction systems. Proc. of the VLDB Endowment, 2014,8(4): 389-400.[doi: 10.14778/2735496.2735502]
    [119] Wang T, Johnson R. Scalable logging through emerging non-volatile memory. Proc. of the VLDB Endowment, 2014,7(10): 865-876.[doi: 10.14778/2732951.2732960]
    [120] Oukid I, Booss D, Lehner W, Bumbulis P, Willhalm T. SOFORT: A hybrid SCM-DRAM storage engine for fast data recovery. In: Proc. of the 10th Int'l Workshop on Data Management on New Hardware (DaMoN 2014). Snowbird: ACM Press, 2014. 1-7.[doi: 10.1145/2619228.2619236]
    [121] Kolli A, Pelley S, Saidi A, Chen PM, Wenisch TF. High-Performance transactions for persistent memories. SIGARCH Computer Architecture News, 2016,44(2):399-411.[doi: 10.1145/2980024.2872381]
    [122] Larson PK, Blanas S, Diaconu C, Freedman C, Patel JM, Zwilling M. High-Performance concurrency control mechanisms for main-memory databases. Proc. of the VLDB Endowment, 2011,5(4):298-309.[doi: 10.14778/2095686.2095689]
    [123] Johnson R, Pandis I, Ailamaki A. Improving OLTP scalability using speculative lock inheritance. Proc. of the VLDB Endowment, 2009,2(1):479-489.[doi: 10.14778/1687627.1687682]
    [124] Pandis I, Johnson R, Hardavellas N, Ailamaki A. Data-Oriented transaction execution. Proc. of the VLDB Endowment, 2010,3(1-2): 928-939.[doi: 10.14778/1920841.1920959]
    [125] Atkins MS, Coady MY. Adaptable concurrency control for atomic data types. ACM Trans. on Computer Systems, 1992,10(3): 190-225.[doi: 10.1145/146937.146939]
    [126] Joshi AM. Adaptive locking strategies in a multi-node data sharing environment. In: Proc. of the 17th Int'l Conf. on Very Large Data Bases (VLDB'91). Morgan Kaufmann Publishers, 1991. 181-191. http://vldb.org/conf/1991/P181.PDF
    [127] Ren K, Thomson A, Abadi DJ. Lightweight locking for main memory database systems. Proc. of the VLDB Endowment, 2012,6(2): 145-156.[doi: 10.14778/2535568.2448947]
    [128] Ren K, Thomson A, Abadi DJ. VLL: A lock manager redesign for main memory database systems. The VLDB Journal, 2015,24(5): 681-705.[doi: 10.1007/s00778-014-0377-7]
    [129] Sadoghi M, Ross KA, Canim M, Bhattacharjee B. Making updates disk-I/O friendly using SSDs. Proc. of the VLDB Endowment, 2013,6(11):997-1008.[doi: 10.14778/2536222.2536226]
    [130] Ailamaki A. Databases and hardware: The beginning and sequel of a beautiful friendship. Proc. of the VLDB Endowment, 2015, 8(12):2058-2061.[doi: 10.14778/2824032.2824142]
    [131] Viglas SD. Data management in non-volatile memory. In: Proc. of the 2015 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2015). Melbourne: ACM Press, 2015. 1707-1711.[doi: 10.1145/2723372.2731082]
    [132] Viglas SD. Write-Limited sorts and joins for persistent memory. Proc. of the VLDB Endowment, 2014,7(5):413-424.[doi: 10. 14778/2732269.2732277]
    [133] Chen S, Gibbons PB, Nath S. Rethinking database algorithms for phase change memory. In: Proc. of the Conf. on Innovative Data Sysytems Research (CIDR 2011). 2011. 21-31. http://cidrdb.org/cidr2011/Papers/CIDR11_Paper3.pdf
    [134] Ren K, Faleiro JM, Abadi DJ. Design principles for scaling multi-core OLTP under high contention. In: Proc. of the 2016 Int'l Conf. on Management of Data (SIGMOD 2016). San Francisco: ACM Press, 2016. 1583-1598.[doi: 10.1145/2882903.2882958]
    [135] Zhu YA, Zhou X, Zjang YS. A survey of optimization methods for transactional database in multi-core era. Chinese Journal of Computers, 2015,38(9):1865-1879(in Chinese with English abstract).[doi: 10.11897/SP.J.1016.2015.01865]
    附中文参考文献:
    [2] 罗乐,刘轶,钱德沛.内存计算技术研究综述.软件学报,2016,27(8):2147-2167. http://www.jos.org.cn/1000-9825/5103.htm[doi: 10. 13328/j.cnki.jos.005103]
    [135] 朱阅岸,周烜,张延松,周明,牛嘉,王珊.多核处理器下事务型数据库性能优化技术综述.计算机学报,2015,38(9):1865-1879.[doi: 10.11897/SP.J.1016.2015.01865]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘巍,李战怀,杜洪涛,周陈超,苏静.新型非易失存储环境下事务型数据管理技术研究.软件学报,2017,28(1):59-83

复制
分享
文章指标
  • 点击次数:5740
  • 下载次数: 14043
  • HTML阅读次数: 4532
  • 引用次数: 0
历史
  • 收稿日期:2016-10-17
  • 最后修改日期:2016-10-26
  • 在线发布日期: 2016-11-26
文章二维码
您是第19872094位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号