主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
李淼,谷峪,陈默,于戈.一种针对反向空间偏好top-k查询的高效处理方法.软件学报,2017,28(2):310-325
一种针对反向空间偏好top-k查询的高效处理方法
Efficient Processing Method for Reverse top-k Spatial Preference Queries
投稿时间:2015-09-10  修订日期:2016-02-19
DOI:10.13328/j.cnki.jos.005050
中文关键词:  top-k查询  反向top-k查询  四叉树  分组  查询优化
英文关键词:top-k query  reverse top-k query  quad-tree  grouping  query optimization
基金项目:国家自然科学基金(61272179,61472071,61402093);中央高校基本科研业务费专项资金(N141604001)
作者单位E-mail
李淼 东北大学 计算机软件与理论研究所, 辽宁 沈阳 110819  
谷峪 东北大学 计算机软件与理论研究所, 辽宁 沈阳 110819  
陈默 东北大学 计算中心, 辽宁 沈阳 110819  
于戈 东北大学 计算机软件与理论研究所, 辽宁 沈阳 110819
东北大学 计算中心, 辽宁 沈阳 110819 
yuge@mail.neu.edu.cn 
摘要点击次数: 931
全文下载次数: 891
中文摘要:
      随着地理位置定位技术的蓬勃发展,基于在线位置服务技术的应用也越来越多.提出一种查询类型——反向空间偏好top-k查询.类似于传统的反向空间top-k查询,对于给定的空间查询对象,该查询返回使该对象满足top-k属性得分的那些用户.但不同的是,该对象的属性不是自身具有的特性,而是通过计算该对象与其他偏好对象之间的空间关系(如距离)而确定.这种查询在市场分析等许多重要领域具有需求,例如,根据查询结果,分析出某个地区中某个设施受欢迎的程度.但是,由于大量空间对象的存在导致对象之间空间关系的计算代价非常高,如何实时地计算出对象的空间属性得分,给查询处理带来很大的挑战.针对该问题提出优化的查询处理算法包括:数据集剪枝、数据集批量处理、基于权重的用户分组等策略.通过理论分析和充分的实验验证,证明了所提出方法的有效性.与普通方法相比,这些方法能够大幅度提高查询处理的执行时间和I/O效率.
英文摘要:
      With the proliferation of geo-positioning techniques, there has been increasing popularity of online location-based services. Specifically, reverse top-k spatial preference queries provide such services to retrieve the users that deem a given database object as one of their top-k results. The attributes of the query object are given by the spatial distance from users' preference. However in real world, users not only consider the non-spatial attributes about the objects, but also hope to find the spatial objects based on the qualities of features in their spatial neighborhood. While reverse top-k spatial preference queries have significant amount of real-life applications such as market analysis, for example, to predict the popularity of a facility in a region, they face a great challenge to compute the score of the spatial attributes online. This paper presents a processing framework and some optimal techniques including pruning and user preference grouping methods. Theoretical analysis and experimental evaluation demonstrate the efficiency of the proposed algorithms and the improvement on running time and I/O.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利