主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
王裴岩,蔡东风.普适性核度量标准比较研究.软件学报,2015,26(11):2856-2868
普适性核度量标准比较研究
Comparative Study of Universal Kernel Evaluation Measures
投稿时间:2015-05-31  修订日期:2015-08-26
DOI:10.13328/j.cnki.jos.004905
中文关键词:  核方法  核选择  核参数优化  普适性核度量标准
英文关键词:kernel method  kernel selection  kernel parameter optimization  universal kernel evaluation measure
基金项目:国家自然科学基金(61402299)
作者单位E-mail
王裴岩 南京航空航天大学 计算机科学与技术学院, 江苏 南京 210016
沈阳航空航天大学 人机智能研究中心, 辽宁 沈阳 110136 
wangpy@sau.edu.cn 
蔡东风 沈阳航空航天大学 人机智能研究中心, 辽宁 沈阳 110136  
摘要点击次数: 2073
全文下载次数: 2019
中文摘要:
      核方法是一类应用较为广泛的机器学习算法,已被应用于分类、聚类、回归和特征选择等方面.核函数的选择与参数优化一直是影响核方法效果的核心问题,从而推动了核度量标准,特别是普适性核度量标准的研究.对应用最为广泛的5种普适性核度量标准进行了分析与比较研究,包括KTA,EKTA,CKTA,FSM和KCSM.发现上述5种普适性度量标准的度量内容为特征空间中线性假设的平均间隔,与支持向量机最大化最小间隔的优化标准存在偏差.然后,使用模拟数据分析了上述标准的类别分布敏感性、线性平移敏感性、异方差数据敏感性,发现上述标准仅是核度量的充分非必要条件,好的核函数可能获得较低的度量值.最后,在9个UCI数据集和20Newsgroups数据集上比较了上述标准的度量效果,发现CKTA是度量效果最好的普适性核度量标准.
英文摘要:
      Kernel method is a common machine learning algorithm used in classification, clustering, regression and feature selection. Kernel selection and kernel parameter optimization are the crucial problems which impact the effectiveness of kernel method, and therefore motive the research on kernel evaluation measure, especially universal kernel evaluation measure. Five widely used universal kernel evaluation measures, including KTA, EKTA, CKTA, FSM and KCSM, are analyzed and compared. It is found that the evaluation object of five universal kernel evaluation measures mentioned above is average margin of a linear hypothesis in feature space, which has bias against the SVM optimization criterion to maximize minimum margin. Then, this study applies synthetic data to analyze the class distribution sensitivity, linear translation sensitivity, and heteroscedastic data sensitivity. It also concludes that the measures mentioned above are only the unnecessary and sufficient condition of kernel evaluation, and good kernel can achieve low evaluation value. Finally, comparing the evaluation result of the measures mentioned above on 9 UCI data sets and 20 Newsgroups data set suggests that CKTA is the best universal kernel evaluation measure.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利