主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第9期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
陈力,王永吉,吴敬征,吕荫润.基于树状线性规划搜索的单调速率优化设计.软件学报,2015,26(12):3223-3241
基于树状线性规划搜索的单调速率优化设计
Rate-Monotonic Optimal Design Based on Tree-Like Linear Programming Search
投稿时间:2014-09-23  修订日期:2015-04-14
DOI:10.13328/j.cnki.jos.004853
中文关键词:  实时系统  单调速率  最优化  搜索算法  线性规划  可满足性模定理
英文关键词:real-time system  rate-monotonic  optimization  search algorithm  linear programming  satisfiability modulo theory
基金项目:国家自然科学基金(61170072);国家青年科学基金(61303057);中国科学院、国家外国专家局创新团队国际合作伙伴计划
作者单位E-mail
陈力 中国科学院软件研究所基础软件国家工程研究中心, 北京 100190
中国科学院大学, 北京 100049 
 
王永吉 中国科学院软件研究所基础软件国家工程研究中心, 北京 100190
计算机科学国家重点实验室(中国科学院软件研究所), 北京 100190
中国科学院软件研究所互联网软件技术实验室, 北京 100190 
ywang@itechs.iscas.ac.cn 
吴敬征 中国科学院软件研究所基础软件国家工程研究中心, 北京 100190
计算机科学国家重点实验室(中国科学院软件研究所), 北京 100190 
 
吕荫润 中国科学院软件研究所基础软件国家工程研究中心, 北京 100190
中国科学院大学, 北京 100049 
 
摘要点击次数: 2534
全文下载次数: 2034
中文摘要:
      改善单调速率(rate monotonic,简称RM)可调度性判定算法的效率,是过去40年计算机实时系统设计的重要问题.最近,研究人员把可调度性判定问题扩展到了更一般的优化设计问题,即,如何调节在区间可选择情况下的任务运行时间,使得:(1)系统RM可调度;(2)系统的某个性能(如CPU利用率)达到最优.在已有的求解实时系统RM优化设计问题的方法中,都是先把原问题建模成广义约束优化问题,然后再对广义约束优化问题进行求解.但现有方法的求解速度较慢,任务数较多时不再适用.提出一种求解优化问题的方法——基于树状的线性规划搜索(linearprogramming search,简称LPS)方法.该方法先将实时系统RM优化设计问题建模成广义约束优化问题,再将其分拆成若干线性规划子问题,然后构造线性规划搜索树,利用剪枝搜索算法求解部分线性规划子问题,最后得到优化解.实验结果表明:LPS方法相比于已有的方法能够节省20%~70%的求解时间,任务数越多,节省时间越多.该研究成果可以与计算机可满足性模定理(satisfiability modulo theories,简称SMT)领域的多个研究热点问题联系起来,并可望改善SMT问题的求解效率.
英文摘要:
      Over the last four decades, a critical problem in real-time system is to improve the efficiency of the decision algorithm for the rate-monotonic(RM) scheduling. Nowadays researchers extend the decision problem to a generalized optimal design problem, that is, how to adjust the task execution time in the corresponding interval such that(1) the system is schedulable and(2) certain system performance(e.g. CPU utilization) is optimized. All the existing methods for solving this problem are to formulate the problem as the generalized constrained optimization problem(GCOP). However, these methods run very slowly and cannot be applied to the systems with large numbers of tasks. In this paper, a new method for solving the optimization problem is proposed. The method is called tree-like linear programming search(LPS). First, the problem is transformed into a GCOP. Next, the GCOP is partitioned into several linear programming sub-problems. Then, a linear programming search tree is constructed and the node of linear programming is solved by depth-first-search as the optimal solution. The experimental results illustrate that the new method can save 20%~70% of runtime comparing with other existing methods. This work also relates to the research areas of satisfiability modulo theories(SMT), and is expected to improve the efficiency for solving SMT problems.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利