社会化推荐系统研究
作者:
基金项目:

国家自然科学基金(60872051); 北京市教育委员会共建项目


Research on Social Recommender Systems
Author:
  • MENG Xiang-Wu

    MENG Xiang-Wu

    Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunication), Beijing 100876, China;School of the Computer Science, Beijing University of Posts and Telecommunication, Beijing 100876, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Shu-Dong

    LIU Shu-Dong

    Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunication), Beijing 100876, China;School of the Computer Science, Beijing University of Posts and Telecommunication, Beijing 100876, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Yu-Jie

    ZHANG Yu-Jie

    Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunication), Beijing 100876, China;School of the Computer Science, Beijing University of Posts and Telecommunication, Beijing 100876, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HU Xun

    HU Xun

    Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunication), Beijing 100876, China;School of the Computer Science, Beijing University of Posts and Telecommunication, Beijing 100876, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [91]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来,社会化推荐系统已成为推荐系统研究领域较为活跃的研究方向之一.如何利用用户社会属性信息缓解推荐系统中数据稀疏性和冷启动问题、提高推荐系统的性能,成为社会化推荐系统的主要任务.对最近几年社会化推荐系统的研究进展进行综述,对信任推理算法、推荐关键技术及其应用进展进行前沿概括、比较和分析.最后,对社会化推荐系统中有待深入研究的难点、热点及发展趋势进行展望.

    Abstract:

    Social recommender systems have recently become one of the hottest topics in the domain of recommender systems. The main task of social recommender system is to alleviate data sparsity and cold-start problems, and improve its performance utilizing users' social attributes. This paper presents an overview of the field of social recommender systems, including trust inference algorithms, key techniques and typical applications. The prospects for future development and suggestions for possible extensions are also discussed.

    参考文献
    [1] Xu HL, Wu XD, Li X, Yan BP. Comparison study of Internet recommendation system. Ruan Jian Xue Bao/Journal of Software, 2009,20(2):350-362 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3388.htm [doi: 10.3724/SP.J.1001. 2009.00350]
    [2] Wang Z, Sun LF, Zhu WW, Yang SQ, Li HZ, Wu DP. Joint social and content recommendation for user-generated videos in online social network. IEEE Trans. on Multimedia, 2013,15(3):698-710. [doi: 10.1109/TMM.2012.2237022]
    [3] Quijano-Sanchez L, Recio-Garcia J, Diaz-Agudo B. Social factors in group recommender systems. ACM Trans. on Intelligent Systems and Technology, 2013,4(1):Article No.8. [doi: 10.1145/2414425/2414433]
    [4] Social Network Analysis. A brief introduction. 2007. http://orgnet.Com/sna.html
    [5] Jamali M, Ester M. A transitivity aware matrix factorization model for recommendation in social networks. In: Proc. of the IJCAI. AAAI Press, 2011. 2644-2649. [doi: 10.5591/978-1-57735-516-8/IJCAI11-440]
    [6] Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proc. of the RecSys 2010. New York: ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736]
    [7] Moghaddam S, Jamali M, Ester M. ETF: Extended tensor factorization model for personalizing prediction of review helpfulness. In: Proc. of the ACM WSDM 2012. New York: ACM Press, 2012. 163-172. [doi: 10.1145/2124295.2124316]
    [8] Hoens TR, Blanton M. A private and reliable recommendation system for social networks. In: Proc. of the IEEE SocialCom. Washington: IEEE Computer Society, 2011. 816-825. [doi: 10.1109/SocialCom.2010.124]
    [9] Berjani B, Strufe T. A recommendation system for spots in location-based online social networks. In: Proc. of the SNS 2011. New York: ACM Press, 2011. 1-4. [doi: 10.1145/1989656.1989660]
    [10] Kim HK, Ryu YU. Cho Y. Customer-Driven content recommendation over a network of customers. IEEE Trans. on Systems, Man and Cybernetics, Part A, 2012,42(1):48-56. [doi: 10.1109/TSMCA.2011.2147306]
    [11] Purushotham S, Liu Y, Kuo CC. Collaborative topic regression with matrix factorization for recommendation systems. In: Proc. of the ICML. 2012. 759-766.
    [12] Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the SIGIR 2009. New York: ACM Press, 2009. 203-210. [doi: 10.1145/1571941.1571978]
    [13] Ma H, Zhou D, Li C. Recommender systems with social regularization. In: Proc. of the WSDM 2011. New York: ACM Press, 2011. 287-296. [doi: 10.1145/1935826.1935877]
    [14] Huang WH, Meng XW, Wang LC. A collaborative filtering algorithm based on users' social relationship mining in mobile communication network. Journal of Electronics & Information Technology, 2011,33(12):3002-3007 (in Chinese with English abstract).
    [15] Jannach D, Geyer W, Dugan C, Freyne J. RecSys 09: Workshop on recommender systems and the social Web. In: Proc. of the ACM RecSys 2009. New York: ACM Press, 2009. 421-422.
    [16] Freyne J, Anand SS. Recommender systems and the social Web. In: Proc. of the ACM RecSys 2011. New York: ACM Press, 2011. 383-384. [doi: 10.1145/2043932.2044014]
    [17] Mobasher B, Jannach D, Geyer W, Freyne J. Recommender systems and the social Web. In: Proc. of the ACM RecSys 2013, ACM Press, 2013. 477-478. [doi: 10.1145/2507157.2508001]
    [18] Meng XW, Hu X, Wang LC, Zhang YJ. Mobile recommender systems and their applications. Ruan Jian Xue Bao/Journal of Software, 2013,24(1):91-108 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4292.htm [doi: 10.3724/SP.J. 1001.2013.04292]
    [19] Min JK, Cho SB. Mobile human network management and recommendation by probabilistic social mining. IEEE Trans. on Systems, Man and Cybernetics, Part B, 2011,41(3):761-771. [doi: 10.1109/TSMCB.2010.2092424]
    [20] Jung JJ. Contextualized mobile recommendation service based on interactive social network discovered from mobile users. Expert Systems with Applications, 2009,36(1):11950-11956. [doi: 10.1016/j.eswa.2009.03.067]
    [21] Saravanan M, Ericsson RD. Bayesian filters for mobile recommender systems. In: Proc. of the Advances in Social Networks Analysis and Mining (ASONAM). Washington: IEEE Computer Society, 2011. 25-27. [doi: 10.1109/ASONAM.2011.51]
    [22] Zanda A, Eibe S, Menasalvas E. SOMAR: A social mobile activity recommender. Expert Systems with Applications, 2012,39: 8423-8429. [doi: 10.1016/j.eswa.2012.01.178]
    [23] Symeonidis P, Papadimitriou A, Manolopoulos Y. Geo-Social recommendations based on incremental tensor reduction and local path traversal. In: Proc. of the 3rd ACM SIGSPATIAL Int'l Workshop on Location-Based Social Networks. 2011. 89-96. [doi: 10.1145/2063212.2063228]
    [24] Kazienko P, Musial K, Kajdanowicz T. Multidimensional social network in the social recommender system. IEEE Trans. on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2011,41(4):746-759. [doi: 10.1109/TSMCA.2011.2132707]
    [25] Yuan Q, Cong G, Ma Z, Sun A. Time-Aware point-of-interest recommendation. In: Proc. of the SIGIR. New York: ACM Press, 2013. 363-372. [doi: 10.1145/2484028.2484030]
    [26] Levandoski JJ, Sarwat M, Eldawy A, Mokbel M. LARS: A location-aware recommender system. In: Proc. of the ICDE. Washington: IEEE Computer Society, 2012. 450-461. [doi: 10.1109/ICDE.2012.54]
    [27] Yin H, Cui B, Chen L, Hu Z, Huang Z. A temporal context-aware model for user behavior modeling in social media systems. In: Proc. of the SIGMOD/PODS. New York: ACM Press, 2014. 1543-1554. [doi: 10.1145/2588555.2593685]
    [28] Yin H, Sun Y, Cui B, Hu Z, Chen L. LCARS: A location-content-aware recommender system. In: Proc. of the KDD. New York: ACM Press, 2013. 221-229. [doi: 10.1145/2487575.2487608]
    [29] Wang LC, Meng XW, Zhang YJ. Context-Aware recommender systems: A survey of the state-of-the-art and possible extension. Ruan Jian Xue Bao/Journal of Software, 2012,23(1):1-20 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/ 4100.htm [doi: 10.3724/SP.J.1001.2012.04100]
    [30] Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58. [doi: 10.1145/245108. 245121]
    [31] Yang X, Guo Y, Liu Y, Steck H. A survey of collaborative filtering based social recommender systems. Computer Communications, 2014,41:1-10. [doi: 10.1016/j.comcom.2013.06.009]
    [32] Guy I, Carmel D. Social recommender systems. In: Proc. of the 20th Int'l Conf. on Companion on World Wide Web. New York: ACM Press, 2011. 283-284.
    [33] Tang J, Hu X, Liu H. Social recommendation: A review. Social Networks Analysis and Mining, 2013,3(4):1113-1133. [doi: 10.1007/s13278-013-0141-9]
    [34] Wellman B, Salaff J. Computer networks as social networks: Collaborative work, telework and virtual community. Annual Review Social, 1996,22:213-238. [doi: 10.1146/annurev.soc.22.1.213]
    [35] Li YM, Hsiao HW. Recommender service for social network based applications. In: Proc. of the 11th Int'l Conf. on Electronic Commerce (ICEC). New York: ACM Press, 2009. 378-381. [doi: 10.1145/1593254.1594683]
    [36] Jiang W, Wang G, Wu J. Generating trusted graphs for trust evaluation in online social networks. Future Generation Computer Systems, 2014,31:48-58. [doi: 10.1016/j.future.2012.06.010]
    [37] Sherchan W, Nepal S, Paris C. A survey of trust in social networks. ACM Computing Surveys, 2013,45(4):Article No.47. [doi: 10.1145/ 2501654.2501661]
    [38] Massa P, Avesani P. Trust metrics on controversial users: Balancing between tyranny of the majority and echo chambers. Int'l Journal on Semantic Web and Information Systems, 2007,3(1):1-21. [doi: 10.4018/jswis.2007010103]
    [39] Ziegler CN, Lausen G. Spreading activation models for trust propagation. In: Proc. of the IEEE Int'l Conf. on e-Technology, e-Commerce, and e-Service. Washington: IEEE Computer Society, 2004. 83-97. [doi: 10.1109/EEE.2004.1287293]
    [40] Levien, Aiken. Advogato's trust metric. 002. http: //advogato.org/trust-metric.html
    [41] Golbeck J. Computing and applying trust in Web-based social networks [Ph.D. Thesis]. University of Maryland College Park, 2005.
    [42] Massa P, Avesani P. Trust-Aware recommender systems. In: Proc. of the RecSys 2007. New York: ACM Press. 2007. 17-24. [doi: 10.1145/1297231.1297235]
    [43] Kuter U, Golbeck J. Using probabilistic confidence models for trust inference in Web-based social networks. ACM Trans. on Internet Technology, 2010,10(2):1-23. [doi: 10.1145/1754393.1754397]
    [44] Liu F, Lee HJ. Use of social network information to enhance collaborative filtering performance. Expert System with Applications, 2010,37(7):4772-4778. [doi: 10.1016/j.eswa.2009.12.061]
    [45] Yu L, Pan R, Li Z. Adaptive social similarities for recommender systems. In: Proc. of the ACM RecSys 2011. ACM Press, 2011. 257-260. [doi: 10.1145/2043932.2043978]
    [46] Silva NB, Tsang IR, Cavacanti GDC. A graph-based friend recommendation system using genetic algorithm. In: Proc. of the 2010 IEEE Congress on Evolutionary Computation (CEC). Washington: IEEE Computer Society, 2010. 1-7. [doi: 10.1109/CEC.2010. 5586144]
    [47] Li X, Chen H. Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach. Decision Support Systems, 2013,54(2):880-890. [doi: 10.1016/j.dss.2012.09.019]
    [48] Liben-Nowell D, Kleinberg J. The link prediction problem for social networks. Journal of the American Society for Information Science and Technology, 2007,58(7):1019-1031. [doi: 1002/asi.20591]
    [49] Lü L, Zhou T. Link prediction in complex networks: A survey. Physica A: Staticstical Methanics and its Application, 2011,390(6): 1150-1170. [doi: 10.1016/j.physa.2010.11.027]
    [50] Mohsen J, Martin E. TrustWalker: A random walk model for combing trust-based and item-based recommendation. In: Proc. of the KDD. New York: ACM Press, 2009. 397-406. [doi: 10.1145/1557019.1557067]
    [51] Shang S, Kuikarni SR, Cuff PW. A random walk based model incorporating social information for recommendations. In: Proc. of the 2012 IEEE Int'l Workshop on Machine Learning for Signal Processing (MLSP). 2012. 1-6. [doi: 10.1109/MLSP.2012. 6349732]
    [52] Jiang M, Cui P, Wang F. Social recommendation across multiple relational domains. In: Proc. of the CIKM. New York: ACM Press, 2012. 1422-1431. [doi: 10.1145/2396761.2398448]
    [53] Li J, Ma S, Hong S. Recommendation on social network based on graph model. In: Proc. of the 31th Chinese Control Conf. Washington: IEEE Computer Society, 2012. 7548-7551.
    [54] Dong Y, Tang J, Wu S, Tian JL, Chawla NV, Rao JH, Cao HH. Link prediction and recommendation across heterogeneous social networks. In: Proc. of the ICMD. Washington: IEEE Computer Society, 2012. 181-190. [doi: 10.1109/ICDM.2012.140]
    [55] Bachstrom L, Leskovec J. Supervised random walks: Predicting and recommending links in social networks. In: Proc. of the WSDM. New York: ACM Press, 2011. 635-644. [doi: 10.1145/1935826.1935914]
    [56] Lichtenwalter RN, Lussier JT, Chawla N. New perspectives and methods in link prediction. In: Proc. of the KDD. New York: ACM Press, 2010. 243-252. [doi: 10.1145/1835804.1835837]
    [57] Kuo TT, Yan R, Huang YY, Kung PH. Unsupervised link prediction using aggregative statistics on heterogeneous social networks. In: Proc. of the KDD. New York: ACM Press, 2013. 755-783. [doi: 10.1145/2487575.2487614]
    [58] Liu J, Zhang F, Song X. What's in a name? An unsupervised approach to link users across communities. In: Proc. of the WSDM. New York: ACM Press, 2013. 495-504. [doi: 10.1145/2433396.2433457]
    [59] Wang H, Manolis T, Nikos M. Location recommendation in location-based social networks using user check-in data. In: Proc. of the GIS. 2013. 364-373. [doi: 10.1145/1869790.1869861]
    [60] Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Journal of Nature, 1999,401(6755):788-791. [doi: 10.1038/44565]
    [61] Jiang M, Cui P, Liu R, Yang Q. Social contextual recommendation. In: Proc. of the CIKM. New York: ACM Press, 2012. 45-55. [doi: 10.1145/2396761.2396771]
    [62] Noel J, Sanner S, Tran KN. New objective functions for social collaborative filtering. In: Proc. of the 20th Int'l World Wide Web Conf. (WWW 2012). New York: ACM Press, 2012. 859-869. [doi: 10.1145/2187836.2187952]
    [63] Cui P, Wang F, Liu S, Ou M. Who should share what? Item-Level social influence prediction for users and posts ranking. In: Proc. of the SIGIR. New York: ACM Press, 2011. 185-194. [doi: 10.1145/2009916.2009945]
    [64] Yang SH, Long B, Smola A, Sadagopan N. Like like alike: Joint friendship and interest propagation in social networks. In: Proc. of the 19th Int'l World Wide Web Conf. (WWW 2011). New York: ACM Press, 2011. 537-546. [doi: 10.1145/1963405.1963481]
    [65] Li WJ, Yeung DY. Relation regularized matrix factorization. In: Proc. of the IJCAI 2009. 2009. 1126-1131.
    [66] Ma H, Yang H. Lyu MR. Sorec: Social recommendation using probabilistic matrix factorization. In: Proc. of the CIKM 2008. New York: ACM Press, 2008. 931-940. [doi: 10.1145/1458082.1458205]
    [67] Lian D, Zhao C, Xie X, Sun G, Chen E, Rui Y. GeoMF: Joiny geographical modeling and matrix factorization for point-of-interest recommendation. In: Proc. of the KDD. New York: ACM Press, 2014. 831-840. [doi: 10.1145/2623330.2623638]
    [68] Koren Y, Bell RM, Volinsky C. Matrix factorization techniques for recommender systems. IEEE Computer, 2009,42(8):30-37. [doi: 10.1109/MC.2009.263]
    [69] Chen T, Zheng Z, Lu Q. Informative ensemble of multi-resolution dynamic factorization models. In: Proc. of the KDD Cup Workshop. New York: ACM Press, 2011.
    [70] Chen T, Zheng Z, Lu Q. Feature-Based matrix factorization. CoRR abs/1109.2271, 2011.
    [71] Chen K, Chen T, Zheng Q. Collaborative personalized tweet recommendation. In: Proc. of the SIGIR. New York: ACM Press, 2012. 661-670. [doi: 10.1145/2348283.2348372]
    [72] Chen T, Tang L, Liu Q. Combining factorization model and additive forest for collaborative followee recommendation. In: Proc. of the KDD Cup Workshop. New York: ACM Press, 2012.
    [73] Ma T, Yang Y, Wang Y. Recommending people to follow using asymmetric factor models with social graphs. In: Proc.of the 17th Online Word Conf. on Soft Computing in Industrial Applications, Vol.223. 2014. 265-276. [doi: 10.1007/978-3-319-00930-8_24]
    [74] Yang X, Steck H, Guo Y, Liu Y. On top-k recommendation using social networks. In: Proc. of the RecSys 2012. New York: ACM Press, 2012. 67-74. [doi: 10.1145/2365952.2365969]
    [75] Yang X, Steck H, Liu Y. Circle-Based recommendation in online social networks. In: Proc. of the KDD. New York: ACM Press, 2012. 1267-1275. [doi: 10. 1145/2339530.2339728]
    [76] Cheng C, Yang HQ, Lyu MR, Irwin K. Where you like to go next: Successive point-of-interest recommendation. In: Proc. of the IJCAI. 2013. 2605-2611.
    [77] Rendle S. Factorization machines. In: Proc. of the 10th IEEE Int'l Conf. on Data Mining. Washington: IEEE Computer Society, 2010. 995-1000. [doi: 10.1109/ICDM.2010.127]
    [78] Rendle S, Zeno G, Christoph F. Fast context-aware recommendations with factorization machines. In: Proc. of the SIGIR. New York: ACM Press, 2011. 635-644. [doi: 10.1145/2009916.2010002]
    [79] Rendle S. Social network and click-through prediction with factorization machines. In: Proc. of the KDD Cup Workshop. New York: ACM Press, 2012.
    [80] Hong L, Doumith AS, Davison BD. Co-Factorization machines: Modeling user interests and predicting individual decisions in twitter. In: Proc. of the WSDM. New York: ACM Press, 2013. 557-566. [doi: 10.1145/2433396.2433467]
    [81] Hofmann T, Puzicha J. Latent class models for collaborative filtering. In: Proc. of the IJCAI. 1999. 688-693.
    [82] Ye M, Liu X, Lee WH. Exploring social influences for recommendation-a probabilistic generative model approach. In: Proc. of the SIGIR. New York: ACM Press, 2012. 671-680. [doi: 10.1145/2348283.2348373]
    [83] He J, Chu W. Design considerations for a social network-based recommendation system (SNRS). In: Proc. of the Community-Built Databases. 2011. 73-106. [doi: 10.1007/978-3-642-19047-6_4]
    [84] Yang X, Guo Y, Liu Y. Bayesian-Inference based recommendation in online social networks. IEEE Trans. on Parallel and Distributed System, 2013,24(4):642-651. [doi: 10.1109/TPDS.2012.192]
    [85] Ye M, Yin P, Lee W. Exploiting geographical influence for collaborative point-of-interest recommendation. In: Proc. of the SIGIR. New York: ACM Press, 2011. 325 -334. [doi: 10.1145/2009916.2009962]
    [86] Li R, Wang S, Deng H. Towards social user profiling: Unified and discriminative influence model for inferring home locations. In: Proc. of the KDD. New York: ACM Press, 2012. 1023-1031. [doi: 10.1145/2339530.2339692]
    [87] Kim Y, Park Y, Shim K. DIGTOBI: A recommendation system for dig articles using probabilistic modeling. In: Proc. of the WWW. New York: ACM Press, 2013. 691-701.
    [88] Kim Y, Shim K. TWILITE: A recommendation system for twitter using a probilistic model based on latent dirichlet allocation. Information Systems, 2014,42:59-77. [doi: 10.1016/j.is.2013.11.003]
    [89] Yu X, Pan A, Tang LA, Han JW. Geo-Friends recommendation in GPS-based cyber-physical social network. In: Proc. of the Int'l Conf. on Advances in Social Networks Analysis and Mining. Washington: IEEE Computer Society, 2011. 361-368. [doi: 10.1109/ ASONAM.2011.118]
    [90] Machanavajjhala A, Korolova, Sarma AS. Personalized social recommendations-accurate or private? In: Proc. of the VLDB. New York: ACM Press, 2011. 440-450. [doi: 10.14778/1988776.1988780]
    [91] Phuong ND, Thang LQ, Phuong TM. A graph-based method for combining collaborative and content based filtering. In: Proc. of the 10th Pacific Rim Int'l Conf. on Artificial Intelligence. Berlin, Heidelberg: Springer-Verlag, 2008. 859-869. [doi: 10.1007/978- 3-540-89197-080]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孟祥武,刘树栋,张玉洁,胡勋.社会化推荐系统研究.软件学报,2015,26(6):1356-1372

复制
分享
文章指标
  • 点击次数:9100
  • 下载次数: 16398
  • HTML阅读次数: 3872
  • 引用次数: 0
历史
  • 收稿日期:2014-04-25
  • 最后修改日期:2015-03-09
  • 在线发布日期: 2015-06-04
文章二维码
您是第19796428位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号