主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
张林,钱冠群,樊卫国,华琨,张莉.轻型评论的情感分析研究.软件学报,2014,25(12):2790-2807
轻型评论的情感分析研究
Sentiment Analysis Based on Light Reviews
投稿时间:2014-05-05  修订日期:2014-08-21
DOI:10.13328/j.cnki.jos.004728
中文关键词:  情感分析  用户评论  短文本  意见挖掘
英文关键词:sentiment analysis  user review  short-text  opinion mining
基金项目:
作者单位E-mail
张林 北京航空航天大学 计算机学院, 北京 100191
浙江财经大学 信息学院, 浙江 杭州 310018 
zhanglin_hz@163.com 
钱冠群 百度公司, 北京 100085  
樊卫国 Department of Information Systems, Pamplin College of Business, Virginia Technological University, USA  
华琨 Electrical and Computer Engineering Department, Lawrence Technological University, USA  
张莉 北京航空航天大学 计算机学院, 北京 100191  
摘要点击次数: 3357
全文下载次数: 3531
中文摘要:
      以在智能移动设备上发表的用户评论作为研究对象,并将该类评论称为轻型评论.指出了轻型评论与早期互联网评论及短文本研究的异同点,并通过实验总结轻型评论的独有特性:字数少、跨度大,短小评论数量众多,评论长度与数量满足幂率分布.同时,针对轻型评论的情感分类研究展开了一系列的实验研究,发现:(1) 情感分类效果随着评论长度的增加而下降;(2) 传统的特征筛选方法以及特征加权方法对于轻型评论效果都不够理想;(3) 极性词在短评论中比例高于长评论;(4) 长、短评论在用词上存在较高的重叠度.在此基础上,提出了一种基于短评论特征共现的特征筛选方法,将短小评论中的优势信息和传统的特征筛选方法相结合,在筛选掉用噪音的同时增补有利于分类的有效特征.实验结果表明,该方法可以有效地提高轻型评论中较长评论的分类效果.
英文摘要:
      This paper researches the newly emerging user reviews (referred here as "light reviews") generated from smart mobile devices. The similarities and differences between this research and the early studies are pointed out. The unique characteristics of the light review can be summarized as having shorter texts, bigger span, and in most cases fewer words per review. The review length and scale also meet the power-law distribution. A series of experiments are studies based on light reviews, resulting in some interesting findings: (1) There is an inverse relationship between classification accuracy and review length; (2) The traditional classical feature selection and feature weight method do not perform well enough on light reviews; (3) The polar word ratio in short reviews, which is the most important feature in sentiment analysis, is higher than in long reviews; (4) There is a higher shared feature term proportion between short review and long review. Based on above studies, the paper puts forward a feature selection method based on short text co-occurrence feature. By combining the information advantages in short reviews with the traditional feature selection methods, the presented method preserves useful information and details as much as possible while removing noise. The results of experiment show that the method is effective and the classification rate is higher.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利