主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
王肇国,易涵,张为华.基于机器学习特性的数据中心能耗优化方法.软件学报,2014,25(7):1432-1447
基于机器学习特性的数据中心能耗优化方法
Power Saving Based on Characteristics of Machine Learning in Data Center
投稿时间:2013-12-31  修订日期:2014-03-17
DOI:10.13328/j.cnki.jos.004601
中文关键词:  节能  分布式计算  机器学习  MapReduce  PageRank
英文关键词:power saving  distributed computing  machine learning  MapReduce  PageRank
基金项目:上海市科委科技攻关项目(13DZ1108800);国家自然科学基金(61370081);国家高技术研究发展计划(863)(2012AA010901)
作者单位E-mail
王肇国 复旦大学 计算机科学技术学院, 上海 201203 zgwang@fudan.edu.cn 
易涵 复旦大学 计算机科学技术学院, 上海 201203  
张为华 复旦大学 计算机科学技术学院, 上海 201203  
摘要点击次数: 3596
全文下载次数: 3352
中文摘要:
      随着互联网的发展,各种类型的数据呈爆炸式增长.通过机器学习的方法对大量数据进行实时或离线的分析,获取规律性信息,已成为各行业提升决策准确性的重要途径.因此,这些机器学习算法成为各个数据中心运行的主要应用.然而,随着数据规模的增大和数据中心面临的能耗问题的突出,如何实现这些算法的低功耗处理,已成为实现绿色数据中心亟待解决的关键问题之一.为了实现对这些机器算法的绿色计算,首先对运行在数据中心中的关键算法进行了深入的分析,并观察到在这些算法中存在大量的冗余计算.在此基础上,设计和实现了一种面向数据中心典型应用的低功耗调度策略.该算法通过对不同计算部分的输入数据进行匹配来判断计算过程中的冗余部分,并对算法进行调度.实验数据显示,对于数据中心的两种典型应用k-means和PageRank,该算法可以实现23%和17%的能耗节约.
英文摘要:
      With the development of the Internet, the scale of data center increases dramatically. How to analyze the data stored in the data center becomes the hot research topic. Programmers resort to the machine learning to analyze unstructured or semi-structured data. Thus, energy efficient machine learning is crucial for green data centers. Based the observation that there is redundant computation in the machine learning applications, this paper proposes a system which can save the power usage by removing the redundant computations and reusing the previous computation results. Evalution shows that for the typical k-means and PageRank applications the presented algorithm results 23% and 17% power saving.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利