主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
慈祥,马友忠,孟小峰.一种云环境下的大数据Top-K查询方法.软件学报,2014,25(4):813-825
一种云环境下的大数据Top-K查询方法
Method for Top-K Query on Big Data in Cloud
投稿时间:2013-09-10  修订日期:2013-12-18
DOI:10.13328/j.cnki.jos.004564
中文关键词:  Top-K查询  云计算  MapReduce
英文关键词:top-K query  cloud  MapReduce
基金项目:国家自然科学基金(61379050,91224008);国家高技术研究发展计划(863)(2013AA013204);高等学校博士学科点专项科研基金(20130004130001)
作者单位E-mail
慈祥 中国人民大学 信息学院, 北京 100872 cixiang31415926@126.com 
马友忠 中国人民大学 信息学院, 北京 100872  
孟小峰 中国人民大学 信息学院, 北京 100872  
摘要点击次数: 4068
全文下载次数: 4000
中文摘要:
      Top-K查询在搜索引擎、电子商务等领域有着广泛的应用.Top-K查询从海量数据中返回最符合用户需求的前K个结果,主要目的是消除信息过载带来的负面影响.大数据背景下的Top-K查询,给数据管理和分析等方面带来新的挑战.结合MapReduce的特点,从数据划分、数据筛选等方面对云环境下的大数据Top-K查询问题进行深入研究.实验结果表明,该方法具有良好的性能和扩展性.
英文摘要:
      Top-K query has been widely used in lots of modern applications such as search engine and e-commerce. Top-K query returns the most relative results for user from massive data, and its main purpose is to eliminate the negative effect of information overload. Top-K query on big data has brought new challenges to data management and analysis. In light of features of MapReduce, this paper presents an in-depth study of Top-K query on big data from the perspective of data partitioning and data filtering. Experimental results show that the proposed approaches have better performance and scalability.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利