主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
胡庆辉,丁立新,何进荣.Lp范数约束的多核半监督支持向量机学习方法.软件学报,2013,24(11):2522-2534
Lp范数约束的多核半监督支持向量机学习方法
Lp Norm Constraint Multi-Kernel Learning Method for Semi-Supervised Support Vector Machine
投稿时间:2013-05-21  修订日期:2013-07-17
DOI:10.3724/SP.J.1001.2013.04483
中文关键词:  半监督  支持向量机  拟牛顿法  多核学习  半监督支持向量机
英文关键词:semi-supervised  support vector machine (SVM)  quasi-Newton method  multiple kernel learning  semi-supervised support vector machine (S3VM)
基金项目:国家自然科学基金(60975050);广东省省部产学研结合专项(2011B090400477);珠海市产学研合作专项资金(2011A050101005,2012D0501990016);珠海市重点实验室科技攻关项目(2012D0501990026);中央高校基本科研业务费专项资金(2012211020209);桂林航天工业学院科研基金(Y12Z028)
作者单位E-mail
胡庆辉 软件工程国家重点实验室武汉大学 计算机学院, 湖北 武汉 430072
桂林航天工业学院 信息工程系, 广西 桂林 541004 
huqinghui2004@126.com 
丁立新 软件工程国家重点实验室武汉大学 计算机学院, 湖北 武汉 430072  
何进荣 软件工程国家重点实验室武汉大学 计算机学院, 湖北 武汉 430072  
摘要点击次数: 3383
全文下载次数: 2612
中文摘要:
      在机器学习领域,核方法是解决非线性模式识别问题的一种有效手段.目前,用多核学习方法代替传统的单核学习已经成为一个新的研究热点,它在处理异构、不规则和分布不平坦的样本数据情况下,表现出了更好的灵活性、可解释性以及更优异的泛化性能.结合有监督学习中的多核学习方法,提出了基于Lp范数约束的多核半监督支持向量机(semi-supervised support vector machine,简称S3VM)的优化模型.该模型的待优化参数包括高维空间的决策函数fm和核组合权系数θm.同时,该模型继承了单核半监督支持向量机的非凸非平滑特性.采用双层优化过程来优化这两组参数,并采用改进的拟牛顿法和基于成对标签交换的局部搜索算法分别解决模型关于fm的非平滑及非凸问题,以得到模型近似最优解.在多核框架中同时加入基本核和流形核,以充分利用数据的几何性质.实验结果验证了算法的有效性及较好的泛化性能.
英文摘要:
      Kernel method is an effective approach to solve the nonlinear pattern recognition problems in the field of machine learning. At present, multiple kernel method has become a new research focus. Compared with the traditional single kernel method, multiple kernel method is more flexible, more interpretable and has better generalization performance when dealing with heterogeneous, irregular and non-flat distribution samples. A multi-kernel S3VM optimization model based on Lp norm constraint is presented in this paper in accordance with kernel method of supervised learning. Such model has two sets of parameters including decision functions fm in reproducing kernel Hilbert space and weighted kernel combination coefficients, and inherits the non-smooth and non-convex properties from single-kernel based S3VM. A two-layer optimization procedure is adopted to optimize these two groups of parameters, and an improved Quasi-Newton method named subBFGS as well as a local search algorithm based on label switching in pair are used to solve non-smooth and non-convex problems respectively with respect to fm. Base kernels and manifold kernels are added into the multi-kernel framework to exploit the geometric properties of the data. Experimental results show that the proposed algorithm is effective and has excellent generation performance.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利