主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
赵家程,崔慧敏,冯晓兵.基于统计学习分析多核间性能干扰.软件学报,2013,24(11):2558-2570
基于统计学习分析多核间性能干扰
Analyzing Cross-Core Performance Interference on Multi-Core Processors Based on Statistical Learning
投稿时间:2013-05-08  修订日期:2013-07-17
DOI:10.3724/SP.J.1001.2013.04482
中文关键词:  云计算  多核  核间性能干扰  统计学习  主成分分析  线性回归
英文关键词:cloud computing  multi-core  cross-core interference  statistical learning  principle component analysis  linear regression
基金项目:国家自然科学基金(61202055,60970024,60925009,60921002,61100011);国家高技术研究发展计划(863)(2012AA010902);国家重点基础研究发展计划(973)(2011CB302504)
作者单位E-mail
赵家程 计算机体系结构国家重点实验室中国科学院 计算技术研究所, 北京 100190
中国科学院大学 计算机控制与工程学院, 北京 100049 
zhaojiacheng@ict.ac.cn 
崔慧敏 计算机体系结构国家重点实验室中国科学院 计算技术研究所, 北京 100190  
冯晓兵 计算机体系结构国家重点实验室中国科学院 计算技术研究所, 北京 100190  
摘要点击次数: 3087
全文下载次数: 2733
中文摘要:
      普遍认为,云计算和多核处理器将会统治计算领域的未来.但是,目前云计算数据中心的计算资源使用率非常低,其主要原因在于多核处理器上存在严重且不可预知的性能干扰.为了保证关键应用程序的QoS,只能禁止这些关键程序与其他程序共同运行,导致了资源的过度分配.为了提高数据中心的利用率,分析多核间的性能干扰成为一个关键的问题.观察到程序遭受的核间性能干扰可以表示为内存子系统总压力的线性分段函数,而与构成压力的具体应用程序关.以此观察为基础,提出了一种基于统计学习的多核间性能干扰分析方法,使用主成分线性回归的方法获得干扰模型,可以精确且定量地预测任意程序由于内存子系统资源竞争导致的性能下降.实验结果表明,平均预测误差仅为1.1%.
英文摘要:
      Cloud computing and multi-core processors are emerging to dominate the landscape of computing today. However, in terms of computing resources, the utilization of modern datacenters is rather low because of the potential negative and unpredictable cross-core performance interference. To provide QoS guarantees for some key applications, co-locations of such applications are disabled, causing computing resource overprovisioning. Therefore precise analysis for cross-core interference is a key challenge for improving resource utilization in datacenters. This study is motivated by the observation that the performance degradation of one application suffered from cross-core interference can be represented as a piecewise function of the aggregate pressures on memory subsystem from all cores, regardless of which applications are co-running and what their individual pressures are. The study results in a statistical learning-based method for predicting cross-core performance interference as well as predictor models using PCA linear regression, which can quantitatively and precisely predict performance degradation caused by memory subsystem contention in any applications. Experimental results show that the average prediction error of the proposed method is 1.1%.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利