主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
丁世飞,黄华娟,史忠植.加权光滑CHKS孪生支持向量机.软件学报,2013,24(11):2548-2557
加权光滑CHKS孪生支持向量机
Weighted Smooth CHKS Twin Support Vector Machines
投稿时间:2013-04-24  修订日期:2013-08-02
DOI:10.3724/SP.J.1001.2013.04475
中文关键词:  孪生支持向量机  光滑孪生支持向量机  CHKS 函数  光滑  加权
英文关键词:twin support vector machines  smooth twin support vector machines  CHKS function  smooth  weight
基金项目:国家自然科学基金(61379101);国家重点基础研究发展计划(973)(2013CB329502)
作者单位E-mail
丁世飞 中国矿业大学 计算机科学与技术学院, 江苏 徐州 221116
中国科学院 计算技术研究所 智能信息处理重点实验室, 北京 100190 
 
黄华娟 中国矿业大学 计算机科学与技术学院, 江苏 徐州 221116
中国科学院 计算技术研究所 智能信息处理重点实验室, 北京 100190 
hhj-025@163.com 
史忠植 中国科学院 计算技术研究所 智能信息处理重点实验室, 北京 100190  
摘要点击次数: 3014
全文下载次数: 2452
中文摘要:
      针对光滑孪生支持向量机(smooth twin support vector machines,简称STWSVM)采用的Sigmoid 光滑函数逼近精度低和STWSVM 对异常点敏感的问题,引入一种性能更好的光滑函数——CHKS 函数,提出了光滑CHKS孪生支持向量机模型(smooth CHKS twin support vector machines,简称SCTWSVM).在此基础上,根据样本点的位置为每个训练样本赋予不同的重要性,以降低异常点对非平行超平面的影响,提出了加权光滑CHKS 孪生支持向量机(weighted smooth CHKS twin support vector machines,简称WSCTWSVM).不仅从理论上证明了SCTWSVM 具有严凸性和任意阶光滑的性能,而且在数据集上的实验结果表明,相对于STWSVM,SCTWSVM 可以在更短的时间内获得更高的分类精度,同时验证了WSCTWSVM 的有效性和可行性.
英文摘要:
      Smooth twin support vector machines (STWSVM) uses Sigmoid function to transform the unsmooth twin support vector machines (TWSVM) into smooth ones. However, because of the low approximation ability of Sigmoid function, the classification accuracy of STWSVM is unsatisfactory. Furthermore, similar to TWSVM, STWSVM is sensitive to the abnormal samples. In order to address the above problems, this paper introduces CHKS function, and proposes a smooth twin support vector machines, smooth CHKS twin support vector machines (SCTWSVM). In order to reduce the influence of abnormal samples on SCTWSVM, different importance are given for each training sample according to the sample point positions for SCTWSVM, resulting in weighted smooth CHKS twin support vector machines (WSCTWSVM). The study proves that SCTWSVM is not only strictly convex, but also can meet the arbitrary order smooth performance. Meanwhile, the experimental results show that SCTWSVM has better performance than STWSVM. Furthermore, the experimental results also show that WSCTWSVM is effective and feasible relative to SCTWSVM.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利