主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
陈黎飞,郭躬德.属性加权的类属型数据非模聚类.软件学报,2013,24(11):2628-2641
属性加权的类属型数据非模聚类
Non-Mode Clustering of Categorical Data with Attributes Weighting
投稿时间:2013-03-30  修订日期:2013-07-17
DOI:10.3724/SP.J.1001.2013.04470
中文关键词:  聚类  类属型数据    属性加权
英文关键词:clustering  categorical data  mode  attribute weighting
基金项目:国家自然科学基金(61175123)
作者单位E-mail
陈黎飞 福建师范大学 数学与计算机科学学院, 福建 福州 350108 clfei@fjnu.edu.cn 
郭躬德 福建师范大学 数学与计算机科学学院, 福建 福州 350108  
摘要点击次数: 3433
全文下载次数: 2645
中文摘要:
      类属型数据广泛分布于生物信息学等许多应用领域,其离散取值的特点使得类属数据聚类成为统计机器学习领域一项困难的任务.当前的主流方法依赖于类属属性的模进行聚类优化和相关属性的权重计算.提出一种非模的类属型数据统计聚类方法.首先,基于新定义的相异度度量,推导了属性加权的类属数据聚类目标函数.该函数以对象与簇之间的平均距离为基础,从而避免了现有方法以模为中心导致的问题.其次,定义了一种类属型数据的软子空间聚类算法.该算法在聚类过程中根据属性取值的总体分布,而不仅限于属性的模,赋予每个属性衡量其与簇类相关程度的权重,实现自动的特征选择.在合成数据和实际应用数据集上的实验结果表明,与现有的基于模的聚类算法和基于蒙特卡罗优化的其他非模算法相比,该算法有效地提高了聚类结果的质量.
英文摘要:
      While categorical data are widely used in many applications such as Bioinformatics, clustering categorical data is a difficult task in the filed of statistical machine learning due to the characteristic of the data which can only take discrete values. Typically, the mainstream methods are dependent on the mode of the categorical attributes in order to optimize the clusters and weight the relevant attributes. A non-mode approach is proposed for statistically clustering of categorical data in this paper. First, based on a newly defined dissimilarity measure, an objective function with attributes weighting is derived for categorical data clustering. The objective function is defined based on the average distance between the objects and the clusters, therefore overcomes the problems in the existing methods based on the mode category. Then, a soft-subspace clustering algorithm is proposed for clustering categorical data. In this algorithm, each attribute is assigned with weights measuring its degree of relevance to the clusters in terms of the overall distribution of categories instead of the mode category, enabling automatic feature selection during the clustering process. Experimental results carried out on some synthetic datasets and real-world datasets demonstrate that the proposed method significantly improves clustering quality.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利