主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
傅启明,刘全,伏玉琛,周谊成,于俊.一种高斯过程的带参近似策略迭代算法.软件学报,2013,24(11):2676-2686
一种高斯过程的带参近似策略迭代算法
Parametric Approximation Policy Iteration Algorithm Based on Gaussian Process
投稿时间:2013-01-29  修订日期:2013-07-16
DOI:10.3724/SP.J.1001.2013.04466
中文关键词:  强化学习  策略迭代  高斯过程  贝叶斯推理  函数近似
英文关键词:reinforcement learning  policy iteration  Gaussian process  Bayesian inference  function approximation
基金项目:国家自然科学基金(61070223,61103045,61170020,61272005,61272244);江苏省自然科学基金(BK2012616);吉林大学符号计算与知识工程教育部重点实验室基金(93K172012K04)
作者单位E-mail
傅启明 苏州大学 计算机科学与技术学院, 江苏 苏州 215006  
刘全 苏州大学 计算机科学与技术学院, 江苏 苏州 215006
符号计算与知识工程教育部重点实验室吉林大学, 吉林 长春 130012 
quanliu@suda.edu.cn 
伏玉琛 苏州大学 计算机科学与技术学院, 江苏 苏州 215006  
周谊成 苏州大学 计算机科学与技术学院, 江苏 苏州 215006  
于俊 苏州大学 计算机科学与技术学院, 江苏 苏州 215006  
摘要点击次数: 3046
全文下载次数: 2564
中文摘要:
      在大规模状态空间或者连续状态空间中,将函数近似与强化学习相结合是当前机器学习领域的一个研究热点;同时,在学习过程中如何平衡探索和利用的问题更是强化学习领域的一个研究难点.针对大规模状态空间或者连续状态空间、确定环境问题中的探索和利用的平衡问题,提出了一种基于高斯过程的近似策略迭代算法.该算法利用高斯过程对带参值函数进行建模,结合生成模型,根据贝叶斯推理,求解值函数的后验分布.在学习过程中,根据值函数的概率分布,求解动作的信息价值增益,结合值函数的期望值,选择相应的动作.在一定程度上,该算法可以解决探索和利用的平衡问题,加快算法收敛.将该算法用于经典的Mountain Car 问题,实验结果表明,该算法收敛速度较快,收敛精度较好.
英文摘要:
      In machine learning with large or continuous state space, it is a hot topic to combine the function approximation and reinforcement learning. The study also faces a very difficult problem of how to balance the exploration and exploitation in reinforcement learning. In allusion to the exploration and exploitation dilemma in the large or continuous state space, this paper presents a novel policy iteration algorithm based on Gaussian process in deterministic environment. The algorithm uses Gaussian process to model the action-value function, and in conjunction with generative model, obtains the posteriori distribution of the parameter vector of the action-value function by Bayesian inference. During the learning process, it computes the value of perfect information according to the posteriori distribution, and then selects the appropriate action with respect to the expected value of the action-value function. The algorithm achieves the balance between exploration and exploitation to certain extent, and therefore accelerates the convergence. The experimental results on the Mountain Car problem show that the algorithm has faster convergence rate and better convergence performance.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利