主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
黄运娟,李凡长.等谱流形学习算法.软件学报,2013,24(11):2656-2666
等谱流形学习算法
Isospectral Manifold Learning Algorithm
投稿时间:2013-01-29  修订日期:2013-08-02
DOI:10.3724/SP.J.1001.2013.04465
中文关键词:  谱方法  流形学习  等谱流形学习  稀疏表示
英文关键词:spectral method  manifold learning  isospectral manifold learning  sparse representation
基金项目:国家自然科学基金(60970067,61033013,60775045);东吴学者计划(14317360);苏州大学国家预研基金(SDY2011A25)
作者单位E-mail
黄运娟 苏州大学 计算机科学与技术学院, 江苏 苏州 215006 yjhuang@126.com 
李凡长 苏州大学 计算机科学与技术学院, 江苏 苏州 215006  
摘要点击次数: 2999
全文下载次数: 2632
中文摘要:
      基于谱方法的流形学习算法的目标是发现嵌入在高维数据空间中的低维表示.近年来,该算法已得到广泛的应用.等谱流形学习是谱方法中的主要内容之一.等谱流形学习源于这样的结论:只要两个流形的谱相同,其内部结构就是相同的.而谱计算难以解决的问题是近邻参数的选择以及如何构造合理邻接权.为此,提出了等谱流形学习算法(isospectral manifold learning algorithm,简称IMLA).它通过直接修正稀疏重构权矩阵,将类内的判别监督信息和类间的判别监督信息同时融入邻接图,达到既能保持数据间稀疏重建关系,又能利用监督信息的目的,与PCA等算法相比具有明显的优势.该算法在3 个常用人脸数据集(Yale,ORL,Extended Yale B)上得到了验证,这进一步说明了IMLA 算法的有效性.
英文摘要:
      Manifold learning based on spectral method has been widely used recently for discovering a low-dimensional representation in the high-dimensional vector space. Isospectral manifold learning is one of the main contents of spectrum method. Isospectral manifold learning stems from the conclusions that if only the spectrums of manifold are the same, so are their internal structures. However, the difficult task about the calculation of the spectrum is how to select the optimal neighborhood size and construct reasonable neighboring weights. In this paper, a supervised technique called isospectral manifold learning algorithm (IMLA) is proposed. By modifying directly sparse reconstruction weight, IMLA takes into account the within-neighboring information and between-neighboring information. Thus, it not only preserves the sparse reconstructive relationship, but also sufficiently utilizes discriminant information. Compared with PCA and other algorithms, IMLA has obvious advantages. Experimental results on face databases (Yale, ORL and Extended Yale B) show the effectiveness of the IMLA method.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利